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Localized behavior in the Lyapunov vectors for quasi-one-dimensional many-hard-disk systems
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We introduce a definition of a “localization width” whose logarithm is given by the entropy of the distri-
bution of particle component amplitudes in the Lyapunov vector. Different types of localization widths are
observed, for example, a minimum localization width where the components of only two particles are domi-
nant. We can distinguish a delocalization associated with a random distribution of particle contributions, a
delocalization associated with a uniform distribution, and a delocalization associated with a wavelike structure
in the Lyapunov vector. Using the localization width we show that in quasi-one-dimensional systems of many
hard disks there are two kinds of dependence of the localization width on the Lyapunov exponent index for the
larger exponents: one is exponential and the other is linear. Differences due to these kinds of localizations also
appear in the shapes of the localized peaks of the Lyapunov vectors, the Lyapunov spectra, and the angle
between the spatial and momentum parts of the Lyapunov vectors. We show that the Krylov relation for the
largest Lyapunov exponeii~—p In p as a function of the density is satisfied(apart from a factgrin the
same density region as the linear dependence of the localization widths is observed. It is also shown that there
are asymmetries in the spatial and momentum parts of the Lyapunov vectors, as well as inaheiy

components.
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[. INTRODUCTION tion” for convenience in this paper, is one of the chaotic

behaviors which involves information on all the individual

The dynamical instability of a system is essentially con-components of the Lyapunov vectors. The Lyapunov local-
nected to the unpredictability of that system. It is describedzation appears as the spatial localization of the largest com-
by the time evolution of the difference of two phase spaceponents of the Lyapunov vector and is generally associated
vectors describing nearby trajectories, the so calledvith the largest Lyapunov exponents. This phenomenon has
Lyapunov vector. If the amplitude of the Lyapunov vector been reported in the Kuramoto-Sivashinsky mof#| in
increasegdecreasesrapidly in time, then the dynamics is coupled map lattice systenj&0-12, in a random matrix
unstable(stablg in the direction of the Lyapunov vector. An model [13], in high-dimensional symplectic map systems
unstable orbit implies that a part of the dynamics is unpre{14], in many-hard-disk systenj45,16|, etc. However it was
dictable and a statistical treatment may be required. Theot clear whether the Lyapunov localization has its origin in
Lyapunov exponent, defined as the rate of exponential divera randomness produced by the chaotic dynarii@$ (such
gence or contraction of the amplitude of the Lyapunov vectoras Anderson localizatiofiL8]) or if it comes simply from the
with time, is the most frequently used indicator of the dy-short range property of particle interactions. For an under-
namical linear instability, and a system with a nonzero posistanding of Lyapunov localizations in coupled map lattice
tive Lyapunov exponent is called chaotic. The Lyapunov ex-models and some nonlinear partial differential equations, a
ponent is connected to the transport coefficients, such as theethod using an analogy with the Kardar-Parisi-Zhang equa-
conductance and viscosit]. In general, for each Lyapunov tion has been proposéd9,20], although this analogy is not
vector there is an individual Lyapunov exponent that is dif-universal as shown by some Hamiltonian systems such as
ferent in magnitude, and this leads to the concept of a sortedonharmonic oscillator chain mode|21]. Moreover, the
set of Lyapunov exponents, the so called Lyapunov spegshysical meaning and significances of this phenomenon is
trum. not well understood. One of the few suggestions about the

Although the significance of theamplitudes of the importance of the Lyapunov localization is that it may be
Lyapunov vectors has been emphasized in the discussion oflated to the existence of the thermodynamic limit for the
the dynamical instability, the Lyapunov vector itself includ- largest Lyapunov exponefd5]. If the spatial localized re-
ing the information about itengle can play an important gion of the Lyapunov vector corresponding to the largest
role in chaotic dynamic§l,2]. For example, the Lyapunov Lyapunov exponent is independent of the number of particles
vector was used to characterize a high-dimensional chaotid in the thermodynamic limit, then the largest Lyapunov
attractor[3] and the clustered motion in symplectic coupledexponent can beN independent. This implies that the
map system$4]. One may also mention that the wavelike Kolmogorov-Sinai entropy, which is equal to the sum of all
structure of the Lyapunov vectors associated with the stepthe positive Lyapunov exponents in closed systems, is an
wise structure of the Lyapunov spectra in the siallabso-  extensive quantity like the thermodynamic entropy. Besides,
lute valueg Lyapunov exponent region has been reported irthis gives some supporting evidence to the existence of the
many-hard-disk systeni$—8. thermodynamic limit of the Lyapunov spectrum, which has

The localization of the Lyapunov vector for high- been the subject of study in many-particle chaotic systems
dimensional chaos, which we call the “Lyapunov localiza-[9,22-24.
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The principal aim of this paper is to use the Lyapunovtudes of the spatial part of the Lyapunov vector, etc. In par-
localization as an indicator of the chaotic properties of manydicular, it is shown that apart from a prefactor the Krylov
particle systems. For quantitative considerations of theelation[41] for the largest Lyapunov exponeRt-—plInp
Lyapunov localization we use an entropylike quantigr  as a function of the particle densipyis satisfied in the same
information dimensionof a distribution function of the am- density region in which the linear dependenD] of the
plitudes of the Lyapunov vector components for each particléocalization widths appears. We also demonstrate a relation
[11,14. We introduce the “localization width” as the quan- between localized regions of the Lyapunov vectors and the
tity whose logarithm is given by this entropylike quantity. positions of colliding particles, suggesting that the Lyapunov
The value of the localization width is in the rangeN] and  |ocalization comes from the short range interaction of the
indicates the number of partiCIES Contributing to the |0calizerartic|eS. We compare some of our results in quasi-one-
part of the Lyapunov vector components. Using the localizagimensional systems with the square system with the same

tion width we can also distinguish different types of delocal-area and show that the two kinds of localizations appear in
ized behaviors of the Lyapunov vectors, such as a delocal,q square case as well.

ization associated with a random distribution of particle As the second aim of this paper we investigate how the
°°F“p°”er.‘t gmplltudes, a delocal.|zat'|on assoqated V‘."th ﬁarticle density and system shape affect the Lyapunov vector
uniform distribution and a delocalization associated with acomponents We show that the spatial part and the momen-
wavelike structure in the Lyapunov vector. As a cpnc_retetum part of the Lyapunov vectors are in almost the same
system to consider for the study of Lyapunov localization,

we use a quasi-one-dimensional system consisting of man jrection at_ high de”SiFy* whereas they are rather clpse to
hard disks, in which the system shape is so narrow as t rthogonal in low density cases, especially in the region of

exclude the exchange of particle positions. In this system thf€ exponential dependenféD ] of the localization widths
minimum value of the localization width is given by 2, be- @S & function of Lyapunov index. The amplitudes of the spa-
cause particle interactions are given by collisions betweeffal part of the Lyapunov vectors are largemalle) than the

two particles. In the quasi-one-dimensional systems each pafPrresponding momentum part in lofhigh) density cases.
ticle can interact only with its nearest-neighbor particles, so/Ve also demonstrate that gaps appear in the amplitudes of
the numerical calculation is less time-consuming than for ghex andy components of both spatial and momentum parts
fully two-dimensional hard-disk system in which each par-of the Lyapunov vectors, because of the difference in roles of
ticle can collide with any other particle. The guasi-one-these directions in the quasi-one-dimensional system. In the
dimensional system also has the advantage that the roles amplitudes of the Lyapunov vector components we can also
the coordinate directions are strongly separated. In our sysee effects due to the stepwise structure of the Lyapunov
tem the narrow directiofithe y direction of the rectangle is spectra.

very much different from the longer orthogonal directitime The outline of this paper is as follows. In Sec. Il we

x direction). Another advantage of the use of the quasi-onecompare some quantities that characterize the Lyapunov lo-
dimensional system is that there is a wider region of stepwisealization and discuss the relative merits of the localization
structure in the Lyapunov spectrum compared to a squar@idth comparing it with the other quantities. The relation
two-dimensional system with the same number of particlepetween the localized region of Lyapunov vectors and the
and the same arg@5]. This is a noticeable point because in position of colliding particles is demonstrated. In Sec. Ill we
this paper we show that the localization width is an indicatorshow that there are two kinds of Lyapunov localizations.
not only of the Lyapunov localization but also of the step-These two Lyapunov localizations are distinguished by their
wise structure of the Lyapunov spectrum. Calculating theLyapunov index dependences and the shapes of the localized
localization width in quasi-one-dimensional systems wepeaks of the Lyapunov vectors. In Sec. IV we investigate the
show that there are two kinds of dependence of theffects of the two kinds of Lyapunov localizations on the
Lyapunov index on the localization widths: an exponentialshape of the Lyapunov spectra and the angles and amplitudes
dependencgfD] and a linear dependen¢€D]. (Here we  of the Lyapunov vectors components, etc. The Lyapunov in-
define the Lyapunov  spectrum as the setdex dependence of theandy components of the spatial part
(ANDN@ NN of the Lyapunov exponents satisfying and the momentum part of the Lyapunov vectors are shown.
the condition \(M=\@=...=\“4N) and introduce the In Sec.V we investigate the density dependences of quanti-
Lyapunov index as the ordering number of the exponents ities associated with the largest Lyapunov exponent such as
the Lyapunov spectrumThe exponential dependeng€D]  the largest Lyapunov exponent itself, the angle of the
of the localization width appears at any particle density, and.yapunov vectors and the localization width, etc., and
shows a tail in the spatial localized shape of the Lyapunowspecify the density region in which the linear dependence
vector. On the other hand the linear dependdiii®] of the [ LD] of the localization width on Lyapunov index appears.
localization widths as a function of Lyapunov index appearsThe region of Lyapunov indices, in which the linear depen-
only in cases of low particle density, and is characterized bylence £D] of the Lyapunov widths appears, is connected to
a sharp rectangular localized shape of Lyapunov vector ithe region in which the Krylov relation for the density de-
space. Next, we consider the effects of the these two kinds gfendence of the largest Lyapunov exponent is satisfied. Sec-
Lyapunov localizations on other quantities, such as the shap#n VI is our conclusions and further remarks. In Appendix
of the Lyapunov spectra, the angle between the spatial pa& we give a derivation of an inequality for the localization
and the momentum part of the Lyapunov vector, the ampliwidth. In Appendix B we compare some results for the quasi-
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2R, dimensional system is that the roles of thandy directions
are separated, so we can investigate how such a separated
. . . . . . ILy role for the directions affects, for example, the Lyapunov
; I | exponents and Lyapunov vectors. In the quasi-one-
‘ x ’ dimensional system the particle positions are roughly equiva-
FIG. 1. The quasi-one-dimensional system that we consider. Thi€nt to the particle indices, so we can discuss the dynamics of
system shape is so narrow that the particles always remain in tH@uantities using three-dimensional graphs as functions of the
same order. collision number and particle index, which is much simpler
than the full of two-dimensional system that requires four-
one-dimensional systems in the text with those of corredimensional graphs as functions of the time, thandy

sponding square systems. components of particle positions. Finally in quasi-one-
dimensional many-hard-disks, we get a wider stepwise re-
Il. LOCALIZATION WIDTH OF LYAPUNOV VECTORS gion of the Lyapunov spectra rather than in the fully two-

dimensional square systems. This was an essential point in
We consider the quasi-one-dimensional system that corthe study of the stepwise structure of Lyapunov spectra and
sists ofN hard-disks with radiuR. The shape of the system the associated wavelike structure of the Lyapunov vectors in

is a two-dimensional rectangle satisfying the condition systems with small numbers of particles in Ref5].
We introduce the Lyapunov vector asST'(M(t)
RNyV3<L, and R<L,<4R, D) =©r),sriv(t), ... ,sr{(t)) corresponding to the

n-th Lyapunov exponents(™ at timet. Here,T{"(t) is the

with width L, and heightL, . Condition(1) means that the : )
system is so narrow that the positions of particles cannot blﬁyapunov vector component corresponding to fie par

n . )
exchanged. The systems satisfying this condition are referredCIe an.d the Lyapunov(ne)xponenf ) attimet. We define the
to as quasi-one-dimensional systems in this paper. The Schggrmal|ze(j(n?mpl|tud@/j (t) of the Lyapunov vector com-
matic illustration of such a system is given in Fig. 1. Theponentsﬂ‘j (t) by
guasi-one-dimensional system was used to discuss the step-

wise structure of the Lyapunov spectra and the associated (”)(t)= |5F,(n)(t)|2 3)
wavelike structure of the Lyapunov vectors in Ref5]. Y - N '
In this paper we consider the case where the parameter kZl | T (1)|?

values are given by the radius of particlBss 1; the mass of
particles,M =1; and the total energy of systeila=N. The
system size is given by, =2R(1+10 °) andL,=NLy(1
+d) satisfying condition(1) with a constantd (except in N
Appendix B where we consider square systgnfoughly E Y (t)=1 @)
speaking, the factor 4d is the averaged ratio of the dis- =1 ’

tances that each particle can move in xhdirection and the

y direction. The constard is connected to the density ogyj(n)(t)gl (5)

so that the conditions

N7 Rz_ 7R? @) are automatically satisfied. FiguresaR and 2Zb) are two
LiLy - (1+d)L§ typical behaviors of the Lyapunov vector components for the
largest Lyapunov exponent as functions of the collision num-
asdszzl(pLi)—l [26]. ber n; and the particle index for (a) d=1.5 (or de_nsityp
The quasi-one-dimensional many-hard-disk system hag0-314...) and (b) d=10° (or density p
many advantages for numerical investigations of the dynami=0-0000078 ... ). Here we take the particle indexso
cal properties of many-particle systems. First, in many-hardthat thex-componenta,;(t) of the jth particle satisfies the
disk systems the free flight part of the dynamics is integrableSonditiondy; (to) <dxa(to) < - - <dxn(to) at the initial time
so the actual numerical calculations of phase space dynami¢s to and the data are taken every two collisiofisshould
and tangent space dynamics are simply described by multhe noted that the collision numbey is related to the time
plications of the time-evolutional matrices corresponding toaPproximately by multiplying by the mean free time, and in
free flight and collision. Second, in the quasi-one-the quasi-one-dimensional system the particle indbas a
dimensional system defined by E@) each particle can only Similar meaning to the& component of the particle position.
collide with its two nearest-neighbor particles, so we do notThese graphs show clearly that a nonzero value of the quan-
need to search every particle pair to find the colliding pair.tity 7,(1)(0 is localized in a small spatial region involving a
These points lead to a faster numerical calculation of thdew particles. Localized peak positions stay in almost the
dynamical properties(especially Lyapunov spectra and same position over several tens of collisions, then seem to
Lyapunov vectors than for other many-particle systems, hop to another position. Details of the localized behaviors of
such as fully two-dimensional particle systefiswhich any  the quantityyj(l)(t), especially the differences between Figs.
pair of particles can collideor with particles with soft-core 2(a) and 2b), will be discussed in the following sections and
interactions. Another advantage of the quasi-oneare the main purpose of this paper.

p
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amplitude of the spatial coordina}&his quantityQ (" char-
acterizes the Lyapunov localization as its spatial exponential
decay rate. However this quantity may not be suitable to
characterize the localization as that in Figb)2which does
not have an exponential decay. Besides, this quantity requires
the thermodynamic limitN—c. The numerical calculation
of the Lyapunov spectrum and Lyapunov vectors for many-
particle systems is very time-consuming and has so far only
been reported for systems of about 1000 partifle€s, so it
may be rather difficult to estimate the quanti®y™ defined
by Eg. (6) numerically.

Another method to characterize the Lyapunov localization
was proposed in Refl5]. In this method we first introduce
a parameter thresholél e (0,1) and define the quanti{’
as

NXx
CE—?)Emin[ X:®<JZ1 <7y§“)(t)>] (7)
« =
with an integeMx and the sorted set

=000, . AP}

satisfying the condition{” (t)=7{"(t)=- . . =5{"(t). This
quantity C{)V is a measure of the number of particle compo-

FIG. 2. Localized behaviors of the amplitudeg) of the nor-  NeNts actively contributing to a localized p(ar:)rt Of_ the
malized Lyapunov vector components of tth particle corre- Lyapunov vector for theath Lyapunov exponenk ™. This
sponding to the largest Lyapunov exponaft) as functions of the quantity C;” does not require the thermodynamic limit, and
collision numbern, and the particle index in a quasi-one- Can be suitable for both types of the Lyapunov localizations
dimensional system dil=50 for (a) high densityd=1.5 and(b) shown in Fig. 2. However this quantity is a function of an
low densityd=10°. artificial threshold®, which cannot be determined by the

dynamics itself.

To obtain our numerical results we use the algorithm de- In this paper we discuss the Lyapunov localization by
veloped by Benettiret al. [27] and Shimada and Nagashima using an entropylike quantity for the amplitude distribution
[28]. This algorithm is characterized by intermittent reor- yj(”)(t) of the normalized Lyapunov vector elements, namely,
thogonalization and renormalization of Lyapunov vectorsithe entropylike quantit™ defined by
which can be done after each particle collision in a many-
hard-disk system. Other papers such as Re&-31] should N
be referred to for more details of this algorithm and the S(n)E—Zl (YP()In M (1)), )
Lyapunov vector dynamics of many-hard-disk systems. =

Now we discuss methods to characterize the strength qoting that the quantityyj(”)(t) satisfies conditiong4) and

the localization of the Lyapunov vectors as those in Figs(s) gq it can be regarded as a kind of distribution function.
2(a) and 2Zb) in a quantitative sense. By analogy to the lo- Using this quantityS™ we introduce the quantityV™ as
calization length used in Anderson localizatifi8] it may

be suggested that the strength of the Lyapunov localization WM =exp S}, (9)
can be characterized by a localization lengtff) defined by

which we call thenth “localization width” corresponding to
[QM] t=lim lim j~XIn ¥{"(1)) (6)  thenth Lyapunov exponent(™. This localization width has
joeN—e already been used to discuss the Lyapunov localization in a
coupled map lattice modgl1] and a high-dimensional sym-
as the number of particles goes to infinity, namely, in the plectic map systenfil4].
thermodynamic limit. Here we use the bracka) to signify To understand the physical meaning of the localization
the long time average of the time-dependent quantity  width /(" defined by Eq(9) it is useful to discuss some of

[Note that in definitior(6) of the localization lengtif)(™ we its properties. The first property of the localization width is
used the fact that the system is quasi-one-dimensional. lthe inequality

more general cases, such as a fully two-dimensional system,
the limit j —<0 in Eq. (6) must be replaced by the limit of the 1=WM=<N. (10
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The derivation of inequality(10) is given in Appendix A. N= 25 o N= 50 = N=100 =
The second property of the localization widih™ is that i IG5 e 0.08 e
the equalityy(W=1 is satisfied only when one of the quan- ,W::’/N (=0.65) Win/N ={ 0.04 --—-—-

tities »™(t), j=1,2,... N is equal to 1, namely, in the (@
most Iocallzed case, and the equalw(”)—N is satisfied
only when all of these quantities are equal to each other,
namely, ¥{"(t)=y{"(t)=---=9{(t)=1/N, namely, in
the most delocalized cassee Appendix A about this point
These properties suggest that the localization widil™
also indicates the number of particles contributing to the lo-
calized part of the Lyapunov vector, which is analogous to
the quantityNC{" derived from Eq.7). The third property

of the localization width comes from the symplectic structure
of the Hamiltonian dynamics. To discuss this property we
note the conjugate relatidd ]

q(4N n+1) J(n)
5F§4N_n+l)5( 5p(4N—n+1)> —§(n)< B ) (11
J

WOIN

sq” (o)
0.8
for the Lyapunov vector componeal{*N™""") of the jth
particle corresponding to the (4 n+1)th Lyapunov expo- 075 [ gy /N - oo aa go o
nent [5] o
N Ha
ANEN=n+1)— _ 5\ (n) (12) = O.# oa B g* 0® o
g Wa/N S
n=12,...,N, wheresq{” and sp{" are the spatial part = 065 5 g 0ot 0 A8 0
o] b
and the momentum part of the Lyapunov vecsbi” of the 55 00020 0 03 g %
r o
jth particle, respectively, angf™ is a constant dependlng on ) AAOEEAQA DGR . . %
the Lyapunov index only\fAs a remark, if we use the Ben- 4 o o® JUV
ettin algorithm to calculate the Lyapunov spectra, which is 0.55 ¢a , ) , ) ) ) ,
characterized by the intermittent normalizatiGas well as 5N-30 2N-20 2N-10 oN
the reorthogonalization of Lyapunov vectors, the facié? n
in Eq. (11) is given by +1 or —1 depending on the
Lyapunov indexn.] From Eqs.(3) and(11) we derive FIG. 3. Normalized localization widthgy (/N in the case of
d=0.5. The circles, triangles, and squares correspond to the cases
yj(“N_””)(t): yj(”)(t) (13)  of N=25, 50, and 100, respectively. The dash-dotted line, solid
line, and dashed linegand the dotted linecorrespond toyy (M
at any timet, where j is the particle index andn =Wyay (=0.738N), Wian (=0.65IN) and Wi, (=2), respec-
=1,2,...,Nis the Lyapunov index. Equatiori8), (9), and tively. (a) Full scale of the normalized localization widths as func-
(13) lead to the third property of the localization width tions of the normalized Lyapunov index(2N). (b) An enlarged
graph of the normalized localization widths corresponding to the
Y EN-n+1)— () (14)  small positive Lyapunov exponent region as functions of the

Lyapunov indexn. Symbols with a gray-filled background corre-

This is the conjugate property for the localization width spond to the two-point steps of the Lyapunov spectra which are
wn, indicated by similar circles in Fig. 4. Symbols surrounded by a

Some of the advantages and disadvantages of the use kgfctangle of dashed lines correspond to the four-point steps of the
the localization widthww™ to discuss the Lyapunov local- Lyapunov spectra which are indicated by similar rectangles sur-
izations are as follows. An advantage of the localizationfounding symbols in Fig. 4.
width W is that its calculation does not require the ther-
modynamic limit, different from the localization lengfh(™ cannot distinguish betweemne peak of heighta and width
defined by Eq(6). Besides, the localization width(" is 28 with constantse and 8 andtwo peaks of heightv and
applicable to the Lyapunov localization seen in Figb)2  width 8 which should be recognized as different localized
whereas the localization lengfh(™ requires that the tail of behaviors. Therefore, in principle we have to look at the
the quanutyy(”)(t) decay exponentially in space. Moreover concrete shapes of localized peaks to check the relation be-
the Iocallzat|on widthV(™ does not require an art|f|C|aI pa- tween this localization width and the peak width in actual
rameter such as the threshd@de (0,1) in the quant|t)C® numerical calculations, even if we calculate the localization
defined by Eq(7), so it can be determined from the dynam- width of the Lyapunov vector. The quant@(()) defined by
ics only. On the other hand, a disadvantage of the localizaEq. (7) also has the same disadvantage.
tion width W is that using this quantity, for example, we  Figure 3 are examples of graphs of localization widths as
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functions of the Lyapunov index in quasi-one-dimensional N=25 o© N=50 & N=100 @

systems. We have plotted the normalized localization widths 0.7 = ;

W(/N for different system sizes for quasi-one-dimensional %, s

systems wheral=0.5 (density p=0.523...). In order to 06 | %o, B

take the time average in E¢B) to calculate the localization 05 | %% 2. 04

. . n) n) . % o, <

width, we sample the quantmazé (t)In ;/j (t) just after col- - o 0.2

« . a . . . ~ (o]

lisions for 1000 collisions and take the arithmetic average. < 04 ¢ o4 1
. . . . . . ~ %o 0O 02 04 06 08 1

(In this paper we always calculate localization widths in this §< 03 |%8sa, 00 WN)

way.) Figure 3a) is the full scale graph of the localization ' A“AAAAAMA =

widths as functions of the normalized Lyapunov index 02t

n/(2N), and Fig. 3b) shows a part of the localization widths

corresponding to the small positive Lyapunov exponent re- 0.1 ¢

gion as functions of the Lyapunov index[Note that we use 0 . ; ; ; ; ; - 2

the normalized Lyapunov indax (2N) for the x axis in Fig. 9N-30 2N-20 9N-10 oN

3(a), which is different from thex axis as the Lyapunov
index n itself in Fig. 3b).] The plot of the values of the
localization widthsy (™, j=2N+1,2N+2, ... 4N is omit- FIG. 4. Lyapunov spectra normalized by the largest Lyapunov
ted because of the conjugate relatid). In the region of exponent\") as a function of the Lyapunov index for d=0.5.
large positive Lyapunov exponents the localization widthThe circles, triangles, and squares correspond to the cashis of
W™ is a monotonically increasing function of the Lyapunov =29.50, and 100, respectively. Symbols with a gray-filled back-
indexn. This implies that localized behavior of the Lyapunoy 9round correspond to symbols with similar circles in Figh)3
vector is stronger in the largén absolute valugLyapunov Symbols surrounded by a rectangle of dashed lines correspond to

exponent region. The shape of the localization width in thisYMPoIS surrounded by similar rectangles in Figo)3Inset. The

region is similar qualitatively to the shape given by the quan_fuII scale graph of the positive branch of the Lyapunov spectra as

. . . . functions of the normalized Lyapunov index(2N) for N= 25,50,
(n)
tity Co” defined by Eq(7) which was calculated in a square and 100. Notice that their global shapes are almost indistinguishable

system[16]. Figure 3a) also shows that the value of the o erywhere except in the small exponent region.

normalized Lyapunov localization widthd’("/N decreases

as a function of particle numbeX in the region where ) ) o )

Lyapunov spectra change smoothly. Noting that the localiza@!S0 notice that the region of the localization widths corre-
tion width has a lower bound/4("W/N=1/N), this suggests sponding to the stepwise region of the Lyapunov spectra,

the existence of the thermodynamic limit for the spectrum ofVhich is around the regiom/(2N)>0.8 of the Lyapunov
the localization widths. index n in Fig. 3 approximately, can be distinguished from

Another important point in Fig. 3 is the connection with the other region. These point.s about the localization widths
the stepwise structure of Lyapunov spectra. Figure 4 showd1at connect with the stepwise structure of the Lyapunov
the normalized Lyapunov spectra as a function of theSPectraare other merits of the use of the localization width to
Lyapunov indexn for different system sizes fod=0.5.  discuss the behavior of the Lyapunov vectors. _
These three system sizes correspond to those of Fig. 3 for the Before finishing this section, it is valuable to summarize
localization width. In this figure the stepwise structures ofSOme specific values of the localization widehl ™ which
Lyapunov spectra appear in the small Lyapunov exponerft‘av_e a cl_ear physmal meaning. The f|_rst value of t_he local-
region. The values of the largest Lyapunov exponents ar&ation width is WMW=Wpa,=N in which the amplitudes
AD~1.28 forN=25 A(D~1.31 forN=50, \(V~1.31 for |6F](”)| of the Lyapunov vector components for each particle
N=100. The inset to Fig. 4 shows the full scale graph of thelake the same value. The Lyapunov localization close to this
positive branch of the Lyapunov spectra normalized by the/alue actually occurs in one of the zero-Lyapunov exponents,
largest Lyapunov exponents as functions of the normalize@s shown inW®N/N in Fig. 3(a). The second value is a
Lyapunov indexn/(2N) (note again that we use the different lower bound for the Lyapunov localization V=W,
horizontal axes in the main graphs and the inset into Big. 4 =2. This is a little stronger condition than the inequality
and show that the global shapes of these graphs are simil¥¥™=1 which we have already shown in the inequality
and almost independent of the particle numbleexcept in (10). This value of the localization width is shown in Fig. 3
the small exponent region. Comparing Fig. 4 with Figp)3  as the dotted lingthe three lines ofV™/N=2/N=0.08 for
for the localization widths in the same region of the N=25, 2N=0.04 forN=50, and 2N=0.02 for N=100).
Lyapunov indexn, we notice that the localization widths This lower bound for the localization width comes from the
W/N normalized by the particle numb#tcorresponding ~ fact that particle collisions occur betweéso particles, and
to the clear two-point steps of the Lyapunov spectra takds partly supported by the fact that the width of the ampli-
almost same value, which is almost independent of the séudesy,(”) of the normalized Lyapunov vector components of
guence of the steps and the particle numidé¢see the sym- thejth particle corresponding to theh Lyapunov exponent
bols with a gray-filled background in Figs(t8 and 4 about A(™ is almost 2 in the low density limit and in large
this poinf. A similar thing can be seen for the four-point Lyapunov exponents, for example, as shown in Fidp).2it
steps of the Lyapunov specti&ee the symbols surrounded should also be emphasized that there is a relation between
by a rectangle of dashed lines in FiggbBand 4] One may the localized region of a Lyapunov vector and positions of

n
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S 45 8 3; u:) ’

3 s v

s 408 s $ s

= L 3 ]

g a5 ' s 3 s ' s " 3 8

g 307 its : ' tg

2 20 ” 3 '_ é

[S) 3

o 15§ s Mhe o 1

8 1ol s ¥ O "‘:13 b ———

£ .8 L I $ s |

2 5% #® et %,

299860 299880 299900 299920 299940 0 * * * ! *
n, 0 0.1 0.2 0.3 04 0.5 0.6
. . . . n/(2N)

FIG. 5. Localized regionggray-filled and surrounded by solid
lines) of the Lyapunov vectosI®) and the numbers of colliding FIG. 6. Normalized localization widthg/(W/N as functions of
par@ic.Ie pairs(as pairs of bIack_—fiIIed circlegas_ functions pf the  the normalized Lyapunov index/(2N) in high density cases af
collision number n; and particle numberj in a quasi-one- =-0.05(circles, d=0.3(triangles andd=1.5(squares The data
dimensional system oN=50 andd=10°. The solid line is the  are fitted by exponential functions. The localization widih&™
contour plot »"=0.3 of the amplitudes of the normalized =W, and Wy, are indicated by the solid line and the dashed

Lyapunov vector component)za‘l) of the jth particle corresponding line, respectively. The localization width indicated by the arrow
to the largest Lyapunov exponext), for the state shown in Fig. corresponds to the localized behavior of the Lyapunov vector
2(b). shown in Fig. 2a).

Ill. DENSITY DEPENDENCE OF THE LYAPUNOV

colliding particle pairs. To show this, in Fig. 5 we plot col- LOCALIZATION

liding particle pairs as well as a contour plot of the amplitude

71(1) as a function of the collision numbeg and the particle In this section we compare the Lyapunov localization
numberj for the quasi-one-dimensional system with=50  widths W (" as a function of the Lyapunov index at different
andd=10°, which correspond to the three-dimensional plotdensities. We concentrate on the region where the Lyapunov
of the Lyapunov localization given in Fig.(19. It is clear ~ SPectra change smoothly as a function of the Lyapunov index
from this figure that particle collisions occur at the beginning@nd show that there are two kinds of Lyapunov index depen-
of the sharp rectangular shapes of the localization of thélénce of the localization widths: exponential dependence
amplitudeSyJ(“). This suggests that the Lyapunov Iocaliza-[gD]_ and linear dependen@eﬁD]: In Fhe remaining sections
tion comes from the short range of particle-particle interacOf tiS paper the number of particlefs=50, and we change
tions. The minimum value of the localization width will also (e Particle density by changing the parametéiconnected

be discussed in Secs. Il B and V C in this paper. The third® # by EQ. (2).

value of the localization width is the value for the case in o _ _

which the amplitudes/{"(t), k=1,2, ... N are distributed A. Lyapunov localization at high density

randomly with an equal probabilitithe solid line in Fig. 3 Figure 6 shows the normalized Lyapunov localization
It is given by W("W=W,,,~0.65IN approximately, and widths as functions of the normalized Lyapunov index
gives an upper bound on the localization widths forn/(2N) for a range of densities. In this figure the random
Lyapunov indices corresponding to the continuous part of th@omponent localization width,,,~0.65N and the mini-
Lyapunov spectruri32]. The fourth value of the localization mum localization widthW,;,=2 are indicated by the solid
width is the value obtained for a wavelike structure in thejine and the dashed line, respectively. We fitted the graphs to
Lyapunov vector. The dashed line in Fig. 3 is given as theaxponential functionsy= a4+ Bgexpysx) with fitting pa-
localization width of ¥{"(t)=[a{”(t)si2mn/N+ 1)1  rametersay, B4, andy,. Here we find the best values of
where the constant{")(t) is determined by the normaliza- the fitting parameters to be a(0s5.8-0.05 Y-009
tion condition foryf”f(t) and B(t) is randomly chosen from =(0.627 454;-0.366 969;-13.1761), ©03,80.3: Y02

a uniform distribution irf 0,27r). Our numerical estimate for =(0.590977--0.469 104+-9.33407) and 15,815,715

the localization widthV(™ in such a case is independent =(0.572315;-0.476522-5.70097). The localization
and is given approximately byv(W=W,,,,~0.736\. Fig-  widths W are nicely fitted by these exponential functions
ure 3b) shows that some of the localization widths are inin the regionn/(2N)=<0.6 (the exponential dependence re-
this range(the dash-dotted lineand they correspond to the gion[&D]).

transverse Lyapunov mode, namely, a wavelike structure in Figure 6 also shows that the localization widths decrease
the Lyapunov vectors corresponding to the two-point steps ofs the parameteat increasegtherefore as the density de-
the Lyapunov spectrurib,25]. creases The largest Lyapunov exponent is an increasing
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function of the particle density, as will be discussed in Sec. d=100 @
; . . . a) d =500 A Wan/N (~0.65)
V, so this result means that the Lyapunov localization is d= 100000 o W /NEO.08)  <—mmmv

stronger in a system with weaker chaos as characterized by a
smaller value of the largest Lyapunov exponent. It should

also be noted that in this region the localization widths are 06 |
smaller than the random localization wid#,,,~0.65N,

and larger thatW,,;,=2. Figure 2a) shows the behavior of
the Lyapunov localization corresponding to the localization < 0.4 |
width indicated by the arrow in Fig. 6. It is important to note % 03 |
that the shape of the quantitie§”(t) as a function of the '
particle index have a tail like that in Fig. @) in the region 02 |
showing an exponential dependefé® ] of the localization

0.7

05 ¢

widths. et
O 1 i 1 L 1 L
B. Lyapunov localization at low density 6 01 02 03 04 05 06 07
Now we consider the Lyapunov localization in low den- n/(@N)
sity cases, given by large values of the paramdidfigure (b) Gl e . e O e -
7(a) shows the normalized localization width&(W/N as d=500 e s d=15 +
functions of the normalized Lyapunov index(2N) for 0.18 , ; ; —
various values ofl for the region where the Lyapunov spec- o6l * CREN
tra change smoothly. It is clear that the Lyapunov index de- ‘ o2
pendences of the localization widths in this figure are differ- 014 | + o7 a  of
ent from the high density cases shown in Fig. 6 in a number ~ 012 | DE.F"
of senses. First, linear dependences of the localization widths < . T
with respect to the Lyapunov index appear in the region of % 0.1 r |3 = AAAK 08—
small localization widths, which correspond to the larger 0.08 | ,-DA__A_A—A' PATE S
Lyapunov exponents. In Fig(f), fits of the Lyapunov index DAE',A.»-&*‘\'_;@_@@'»@‘@ ©
dependences of the localization widths by linear functions 0.06 ~_§%AA—-®_®..@-®
y=agx+ Bq4 are given with fitting parameteray and By: S .
(a2, B12) = (0.503 874,0.046 405) in the case of 107, 0.02 ‘ - - ‘
(s 102 Bsx 1) = (0.347 437,0.044 468) in the case df g 0.08 0-1n/(2N‘;-15 02 025

=5%10%, and (@, B15) = (0.224 129,0.042 750 6) in the
case ofd=10". It is important to note that the localization  FiG. 7. Normalized localization widthgy (/N as functions of
widths are always larger than 2, nameWy™/N>2/N  the normalized Lyapunov indes/(2N) in the low density cases
=0.04 in this figure, and the smallest localization widthsd=10? (squarel d=5xX 10 (triangles, andd= 10" (circles. The
corresponding to the largest Lyapunov exponents are close tocalization widths W™ =W,,, and W,,;, are indicated by the
this minimum value in these low density cases. Besides, theolid line and the dashed line, respectived). Localization widths
graph of the linear dependence of the localization widths ign the Lyapunov index region/(2N)<0.7. The data are fitted by
flatter in the lower density case, as shown by the fact that than exponential function. The gray region is the region in which the

value of the fitting parametét, decreases as the value of the /°Calization widths show a linear dependepd® | as a function of
parameterd increases. The existence of the linear depen!‘yapunov 'n.dex in the low dens't.y limitb) Enlarged. graphs -

dence[ £D] of the localization widths is one of the main cluding thg linear erendenqe region of.the Iocallz.atlon widths. The
results of this paper(in Fig. 7(a the region of the linear data are fitted by linear functions. This figure also includes a part of

) o o the graph of the normalized localization widths for the case
dependencgLD] in the low density limit is shaded gray. =1.5(crossel which has already been shown in Fig. 6. The local-

Second, in Fig. @ we can still recognize a region of local- ,ation widths indicated by the black arrow, the gray arrow, and the
ization widths in which the Lyapunov index dependence ofytiine arrow correspond to localized behaviors of the Lyapunov
the Lyapunov localization widths is exponentigihe expo-  yectors shown in Figs.(8), 2(b), and 8, respectively. The thick gray
nential dependendeD ] region. To show it clearly we give  horizontal line to connect the localization widths indicated by the
a fit of an exponential functiop= o’ + B'exp(y'x) with val-  plack arrow and the outline arrow in Fi¢p) is given to show that
ues @',B',v')=(0.560814,-2.73348;-7.50543) of the these values take almost the same value.

fitting parameters in Fig.(@). It should be emphasized that

the shapes of the localization widths in th€D ] region are  dependencgD] are more distinguishable in the lower den-
almost independent of the particle densityat least in the sity case, with an accompanying sharp bending of the local-
three density cases shown in Figa)Z As the third point, one ization width profile. Figure 7 suggests that the spectrum of
may notice that from the above characteristics of the localthe localization widths as a function of Lyapunov index has a
ization widths in the low density cases the region of thedistinct shape in the low density limi— 0 with a critical
linear dependence£D] and the region of the exponential value /g, of the Lyapunov index where the localization
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0.04
d=-005 o o 003] “te.,,
d=03 & R e,
d=1.5 s 5002
d=100 = R oL, tAres
d=500 . 0.01 IR T T LT
d=100000 * o

0.75 0.8 0.85 0.9 0.95 1
n/2N

FIG. 8. Localized behaviors of the amplitudg§® of the nor-
malized Lyapunov vector components of each particle as a function
of the collision numben, and the particle indek for d=5x 107
The corresponding localization width is indicated by the outline
arrow in Fig. 1b).

}L(n) / x(l)

width W shows a linear dependendeCD] in the
Lyapunov indexn={g, and shows an exponential depen-
dence[ ED] in the Lyapunov index> (g, .

It is important to note that the exponential dependence 0 0.2 04 0.6 08 1
[ED] and the linear dependeng¢&€D] of the localization n/(2N)
widths can also be distinguished by the shapes of the ampli-

tudeSyl-(“)(t) .Of the no_rmallzed. Lyapunov vector Componentsexponents)\(l) as functions of the normalized Lyapunov index
of each partlcle. To _dlscuss this point we note that Fig) B _ n/(2N) for d=—5x 102 (open circle d=0.3 (open trianglek

the localized behaylor Qf the Lyapunov vector corres_pon_dlngj: 1.5 (open squarésd= 1% (closed squargsd=5x 1% (closed

to the Lyapunov width indicated by the black arrow in Figs. yrjangles, andd=10° (closed circles The gray region is the region

6 and 7b) and is in the region of exponential dependencey, which the localization widths show a linear dependenB] as
[£D] of localization widths. This localization shows a long a function of the Lyapunov index at low densities. The small figure
tail behavior. On the other hand, Fig(b2 is the Lyapunov in the upper right side shows the enlarged graphs of the small posi-
localization corresponding to the localization width indicatedtive region of the Lyapunov spectra for the low density cases of
by the gray arrow in Fig. (b) and is in the region of linear =10, 5x 1, and 16.

dependencé¢ £LD] of localization widths. This localization

shows a sharp rectangular shapéth width 2). These ob- It should be noted that the linear dependen€P | of the
servations lead to the conjecture that in the exponential ddecalization widths as a function of the Lyapunov index is
pendencd D] the amplitudeSyl-(”)(t) have a long tail, and not a property of the quasi-one-dimensional systems only. In
in the linear dependende&D] the amplitudeSyJ(”)(t) have a Appendix B we consider the localization widths in a square
rather sharp rectangular shape. To make this point convinsystem, and show that the linear dependen€B] of the

ing, we compare the behaviors of the amplitud{é’@(t) cor-  Lyapunov localization also appears in the square system.
responding to two localization widths, which take almost the

FIG. 9. Lyapunov spectra normalized by the largest Lyapunov

same value of the localization widths but show different de- IV. LYAPUNOV SPECTRA AND THE ANGLES
pendenceg £LD] and[£D] of the localization widths. For AND AMPLITUDES OF LYAPUNOV
this purpose we choose the 15th localization widh'® for VECTOR COMPONENTS

d=5x 10?. This localization width, indicated by the outlined In this section. we consider how differences between the
arrow in Fig. Zb), is in the region of the linear dependence . '

[LD] and takes almost the same value as the IocalizatioHnear[ﬁp] and exponential dep?f‘de”‘{@] of the local-
width W indicated by the black arrow in Figs. 6 antby Ization widths affect other quantities, such as the Lyapunov
in the cased=1.5, which is in the region of exponential S?eﬁtrum’ the angle bEtWeendthr? spatialll agd m(;r;i:tgm parts

e o - of the Lyapunov vectors, and the amplitudes o ndy
dependencgfD ] of the localization widths, and whose lo- .
caIFi)zed beh@avio]r is shown in Fig(a. Figure 8 shows the components of the spatial part an_d the momentum part of the
localized behavior of the am Iitud@él‘r’)(t) as a function of Lyapunov vectors. We also investigate the effects of the step-
the collision numbem. and Ft)he particle index for d—5 wise structure of the Lyapunov spectra on these quantities.

. -

X 10°. Here, the data in Fig. 8 are taken after every second

collision. This figure shows that some peaks of the ampli- A. Lyapunov spectra

tudes«y}“)(t) have flat tops with a width 2 and distinct rect-  Figure 9 shows the normalized Lyapunov spectra for the
angular shapes, although its corresponding Lyapunov expaystems as functions of the normalized Lyapunov index for a
nent, the 15th Lyapunov exponent, is far from the largest oneange of values ofl. Here the values of the largest Lyapunov
and is less localized than in Fig. 2. exponents are given byM~4.79 ford=—-5x102, \(M
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~1.64 ford=0.3, A\(Y~0.769 ford=1.5, \(!)~0.0579 for 0.51

d=10%, \(V~0.0161 ford="5x10?, and \(V~0.000 157 W05 —— ]

for d=10°. The negative branch of the Lyapunov spectra are d=005 = s o fEmamseewedd sanes

omitted in this figure because of the conjugate prop&rfy gf?-g L g

of the Lyapunov exponents. The Lyapunov index depen- d=100 = Y 045f..ummannnnt  Lans

dences of the localization widths in these cases were shown d=500 - "

in Figs. 6 and 7. It should be emphasized that in the low d=100000 e 043 562 0.86 09 094 098

density cases, in which the linear depend€gngb | appears, n/2N

we can recognize a sharp bend in the Lyapunov spectra T

around the normalized Lyapunov index={g . Such a 05 g

bending point corresponds to the point that distinguishes the “ il

dependenceg£D] and[£D] of the localization widths in 04 ~ T

Fig. 7. (In this figure the region of the linear dependence g . y

[ LD] of localization widths at low densities has a gray back- /\\ 0.3 7° I_-"

ground) It may be noted that such a bending of the = s i S

Lyapunov spectrum has also been reported in a fully two- S/D 0.2 fa& " . Am‘j—

dimensional systerfi33] (also see the Lyapunov spectra for = A

the Fermi-Pasta-Ulam models in Reff84,35). 01 F ; “
In Fig. 9 we can see some stepwise structures of the e

Lyapunov spectra, not only in the high density casdes 0 L

—5x1072, d=0.3 and 1.5, but also in the low density cases 0 0.2 0.4 0.6 0.8

d=10?, d=5%10? andd=10". (See the enlarged graphs in n/(2N)

the upper right side of Fig. 9 for the stepwise structure of the
Lyapunov spectra in these low density cas@$e steps of
the Lyapunov spectra consist of two-point steps and four
pD(i);fr:resrtfr;fty)nYlka::: f\ll\i/gf:e d%?]r;?tlsegzgelsn :t%glvlndgr?stﬁul theas functions of the normalized Lyapunov indak(2N) for d=
. . ! - "—5x10"2 (open circley d=0.3 (open triangles d=1.5 (open
separations of the two-point steps and the four-point steps 'Qquare; d=1 (closed squares d=5x1C? (closed triangles
the Lyapunov spectra are not so clear. andd=10° (closed circles The gray region is the region in which
the localization widths show a linear dependepé® | as a func-
B. Angle between the spatial and the momentum parts tion of the Lyapunov index in low density cases. The solid line
of the Lyapunov vectors corresponds to the valug" = 7/2 of the angle. The small figure in

As a second example to illustrate the effects of the tWOthe upper right side shows the enlarged graphs for the low density

dependencegsCD ] and[ D] of localization widths, we con- casesd=10, 5x 10, and 10 in the region of large Lyapunov

FIG. 10. The time averaged'™)/x of the angle divided byr
for the spatial partsg™ and the momentum pardp™ of the
Lyapunov vector corresponding to théh Lyapunov exponent (™

sider the angle ™ between the spatial parsgq™ indices.
n n n
:(5qiln;*5qi2n;* a ,5ng“;)1 and the momentum paﬁpi:i tangent vectof8,36,37, so it is important to investigate the
=(op1",dpz", ... ,6pN") " of the Lyapunov vectorsI™" relation between the spatial part and the momentum part of
corresponding to theth Lyapunov exponent (", which is  the Lyapunov vector.
defined by In Fig. 10 we show the graphs of the time average
5. 5p( (") as a function of the normalized Lyapunov index
#M=cos ! q-op _ (15) n/(2N) for a range of values ad. Here the time average of
| 59™|| 5p™)] the angled" is the arithmetic average of their values imme-
diately after collision, for 1008 collisions. The plots of the
Noting the conjugate relations time-averaged anglé®™), n=2N+1,2N+2, ... &, cor-
responding to the negative branch of the Lyapunov expo-
SqUN-N+1). sp(aN-n+1) sq™- 5p™ nents are omitte_d because of. the conjugat_e pror(&r?tyqf
=— 16)  the angled™. It is noted that in our numerical calculations
| sqUN L] spaN L] | 59™| 5p ™| the amplitudeg sp(™|, n=2N—2, 2N—1, and N corre-

sponding to zero-Lyapunov exponents are Zercextremely
following from the conjugate properifil) of the Lyapunov  small, so the angle®™, n=2N—-2, 2N—1, and N can-

vectors, the anglé" satisfies the condition not be defined. This is the reason why we do not plot these
angles in Fig. 1@see Sec. IV C about this pojnfThis figure
GUAN=FD) = 7 g(n), (17)  shows that in the low density cases, in which the linear de-

pendencég £D] of the localization widths appears, the spec-
This angle has already been investigated in many-particlea of the averaged angléd™) bend around the value
systemg 7,25]. It should be noted that some analytical ap-n/(2N) =g, /(2N) of the normalized Lyapunov indexln
proaches give a formula to calculate Lyapunov exponent§ig. 10 we showed a region of the linear dependgnte |
from the spatial part onlyor the momentum part onlyfthe  of the localization widths as a gray regipin the region of
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the linear dependendeCD] of the localization widths the Ues, and this suggests the existence of a time-scale separation
time-averaged anglg®™) increase monotonically as func- in the dynamics of these systems. . .

tions of Lyapunov indices, while the time-averaged angles ~ One might think that in the quasi-one-dimensional sys-
the localization widths are close t@/2, meaning that in this Narrow rectangular shape of the system. In the quasi-one-

region the vectorsq™ is almost orthogonal to the vector g:gr?]zqs'(:ﬁzlt'S%SétesTagsgfegg'lﬁalpc)tg%]liggﬁsea\?gtgea'rl]oxwhe
sp" (see the case af=10" in Fig. 10. Ly, ! ra partcie !

We can also see the effect of the stepwise structure of thgirection is much larger than the time scale of that in yhe
. o irection, and it m n ibility leadin he time-
Lyapunov spectra in the angié™. As shown in Fig. 10 the ection, and it may be one possibility leading to the time

| f the ti d n) di scale separation mentioned abogidowever this possibility
values of the time-averaged angkg&™) corresponding to may be rather unlikely, because as shown in Appendix the

the two-point steps of the Lyapunov spectra in Fig. 9 aréengding point of the Lyapunov spectra does not change sig-
rather smaller than the values corresponding to their fOUfhificant|y on changing the system from quasi-one-
point steps, at all densities shown in Fig. (8e the upper  dimensional to square with the same atgh, and the same
right side of Fig. 10 for the low density cageSherefore the  number of particlesN.) Another possibility to explain this
Lyapunov index dependence of the time-averaged anglesending of the Lyapunov spectrum may be from the different
(6") can be used to distinguish the two-point step of theroles of the spatial and momentum parts of the Lyapunov
Lyapunov spectra from the other parts. vectors at low density. The result in Sec. IV B supports this
point, showing that the spatial and momentum parts of the
Lyapunov vectors are not in the same direction at low den-
C. Amplitudes of the x and y components sity.
of the Lyapunov vectors Motivated by the above considerations, in this section we
As shown in Sec. IV A, in low density cases the positive consider the amplitudes of the four parts of the Lyapunov
branch of Lyapunov spectra is separated into three payts: vectors: thex andy components in the spatial part and the
A region in which the Lyapunov spectrum is a rapidly de-momentum part of the Lyapunov vectors, namely, the four
creasing function of the Lyapunov index and corresponds t&inds of quantities defined by
the linear dependend&D] of the localization widths(ii) a N
region in which the values of the Lyapunov exponents are > |5q({(‘)(t)|2
very small compared to the largest Lyapunov exponent and () k=1 !
correspond to the exponential dependerii@] of the local- AU —
ization widths, andiii) a region showing the stepwise struc- > s ()|
ture of the Lyapunov spectra. The boundaries of regions k=1
and(ii) of the Lyapunov spectra appear as a sharp bending of
the Lyapunov spectra in the low density limit. To understand S |spt
this characteristic of the Lyapunov spectra we note that a = | 5Pk
positive Lyapunov exponent is connected to a decorrelation ng})(t)EN—, (19
rate in chaotic dynamics, and a larger positive Lyapunov |6F(”)(t)|2
exponent means that a trajectory diverges more rapidly on k=1 k
the energy surface in ergodic systems and loses correlation
with its initial value more quickly. This is partly supported j=x andy, in each Lyapunov index. Here 5q{(t) and
by the fact that the Kolmogorov-Sinai entropy, which is 5p(,’<‘)(t) are thej components of the spatial coordinate part
equal to the sum of all the positive Lyapunov exponentsfsqg(“):(5q(xr;l)(t),5Q§r|l)(t)) and the momentum parbp{”
(Pesin’s identity in closed systems, is connected to the i”'=(5p§'l?(t),5p§”k)(t)) of the Lyapunov vector 5F(kn)
verse relaxation time in ergodic systefild. A relation be- =(5q{™ ,5p{™) corresponding to thkth particle and thath

tween a Lyapunov exponent and a decay rate of time corrq-y3yunov exponent at time respectively. These four quan-
lation is also discussed in Ref88,39. Another example of  ities are normalized as

a relation between a time scale of the dynamics and a posi-

tive Lyapunov exponent is the_ tracer particle _effect in ﬂgl)(t)Jr Uény)(t)Jr 77((&)('[)4' 7/5;{})('[)= 1 (20)
Lyapunov spectrd40]. On this subject, a many-particle sys-

tem consisting of a small light particle, called the tracer parby their definitions. Using the conjugate propefiyi) of the
ticle, moving at high spee@he short time scajeand many Lyapunov vector we obtain

big heavy particles moving at low speeébe long time

(18

scalg is considered. It is shown that the existence of the 2SN I =9, (21)
tracer particle leads to relatively large Lyapunov exponents
compared with the Lyapunov exponents corresponding to the 2SN = 55 (1). (22

other heavy particles. At low density the quasi-one-

dimensional systems exhibit a bending of the Lyapunovlherefore we can omit the quantitiesf)‘}N_””)(t) and
spectra, which separates the set of positive Lyapunov expmff}”’““)(t), for n=1,2,...,N corresponding to the
nents into two groupsi) and (ii) of relatively different val- negative branch of the Lyapunov spectra.

046203-11



T. TANIGUCHI AND G. P. MORRISS PHYSICAL REVIEW E68, 046203 (2003

0.16

(@d=-005 o4l _ * (b) d=0.1 P
XxxkkE ox X 2 + ¥Xx xx
0.3 Bl BRIRI I
<nqx(n)> (o] 0.2 * + * <ﬂqx(")> o 0.08 ‘.‘)‘“’ XX
Q] . Q] *x
<y e = 0.1 NCS <nqy(n)> S o004
<npx(n)> & +* <Npx™> + be  KxxRXX
" 0 ) 1
<Npy®>  x 0.75 0.8 0.85 0.9 0.95 1 Slpe B . 0.75 0.8 0.85 0.9 095 1
n/(2N) n/(2N)
1 . 1 z d

i i i i B . i .
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
n/@N) n/@N)
0.016 ;= 5
(c)d=1 x (dyd=10 0.0008 1>,
0012 [+, x, xx .
0.0006 | i,
<Ng> o  0.008 ' o <> o 0004 >
<> e g0 iy 88 <gy®> 4 JRESURRR
<>+ P <Npx> + 00002 o S
) 33490 +
<> x 0 0,75 0.8 0.85 0.9 095 1 <Tpy™> % .75 08 085 09 095 1
n/(2N) n/(2N)
1 - = 1 T -
an
' 4
08 | o 08 |
a %Q wa
ado 1 o °
06 | 5% o TS o
o g
T MMMA‘AA a °d"“
oom AAAAA‘- B A»“M
1 02 1
N I
@
¥ = 0 [Reeroanaonony
0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
n/(2N) n/(2N)

FIG. 11. The time averages of the normalized amplitudes ok tt@mponent of the spatlal pa{r([n(”)(t» circled, they component of
the spatial coordinate par{ nqy(t)> triangled, the x component of the momentum pzil(tnp (1)), pulse§ and itsy component of the
momentum par{(npy(t» crosseb of the Lyapunov vectors as functions of the normalized Lyapunov imdé2N) for d=—5x10"?2
[graph(a)], d=0.1[graph(b)], d=1 [graph(c)], andd=10° [graph(d)]. The small panels in the top right &), (b), (c). and(d) are enlarged
graphs of( n(”)(t)> and(n(”)(t)> in the small positive Lyapunov exponent regions. The gray region in gi@pk the region in which the
localization W|dths show a linear dependefd® | as a function of the Lyapunov index.

Figure 11 contains the graphs of the time-averaged quarthe lowest density, respectively, considered in Secs. I,
tities defined by Egs(18) and (19) as functions of the nor- IV A, and IV B, and the other two cases are given to show
malized Lyapunov indexi/(2N) for a range of values ad. intermediate situations between the two cases of Figs) 11
Here the time averagéX) of the quantitiesX= ng;)(t), and 11d). It is noted that Figs. 1h)—11(c) are for the case

25(t) 7{)(t) and 7{)(t) are taken as the arithmetic aver- of a particle density in which the linear dependengé®]
age of the quantity immediately after collisions, for 1000 of localization widths do not appear yet, and only in the gray
collisions. The cases af=—5x10 2 andd=10° shown in  region of Figs. 1ld) does the linear dependengéD] ap-
Figs. 1Xa) and 11d) are the cases of the highest density andpear. From this figure it is clear that there is a strong asym-
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metry between the spatial and momentum parts of theteps of the longitudinal patty{}(t)) and(7{}(t)) of the
Lyapunov vectors in any density region, as well as an asymkyapunov vectors corresponding to the four-point steps of
metry between thex andy components of the Lyapunov the Lyapunov spectra are larger than their transverse parts
vectors especially at low density. (n{)(1)) and(7{Y(t)) in Figs. 11a)-11(c), and the spatial
The behavior of the graphs in Fig. 11 are different in theparts of the Lyapunov vectors in Figs.(&lL At any density
region where the Lyapunov spectra change smoothly and ithe spatial partg %{)(t)) and (#{)(t)) are usually larger
the stepwise region of the Lyapunov spectra. First we discusian the momentum parts;()(t)) and (7{)(t)), respec-
the region where the Lyapunov spectra change smoothlyively, in the region of Lyapunov indices indicating the step-
which is the region of the Lyapunov indexe$(2N)<0.8  wise structure of the Lyapunov spectra. It should be empha-
approximately in Fig. 11. In the high density case shown insized that wavelike structuréthe transverse Lyapunov
Fig. 11(a) the momentum parts( Q;f)r;z(t)) and(ng})(t») of  modes$ in they components of the spatial part and the mo-
the Lyapunov vectors are larger than the corresponding spamentum part of the Lyapunov vectors appears in the two-
tial parts ((ng’}( (1) and(ng;,)(t)». As the density decreases, point steps of the Lyapunov spectra reported by R&f25],
the spatial parts of the Lyapunov vectors increémed mo- and Fig. 11 suggests that we may get a rather clearer wave-
mentum parts decreasdirst in thesmall positive Lyapunov  like structure in the spatial part of the Lyapunov vectors than
exponent regiofisee changes from Fig. (& to Fig. 11b)],  in its momentum part. We can conclude a similar result for
and then in théarge Lyapunov exponent regidisee changes the four-point steps of the Lyapunov spectra in which time-
from Fig. 11(b) to Fig. 11(d) via Fig. 11c)]. At very low  dependent wavelike structure in theomponents of the spa-
density, as shown in Fig. 1d), the spatial parts of the tial part of the Lyapunov vectors and xncomponents of the
Lyapunov vectors are much larger than the correspondingpatial part of the Lyapunov vectof$6,25 is observed. It
momentum parts for Lyapunov vectors of any index, and anay be noted that the time-averaged ampIitudeSj(t)}
linear dependenceLD] of the localization widths appears. and(yéry(t)), n=2N-2, 2N—1, and 2\ corresponding to
In this density region a significant gap in tkeandy com-  zero Lyapunov exponents are almost zero at any de(ssty
ponents of the spatial part of the Lyapunov vectors appearshe small panels in the top right of Figs. (&1-11(d)).
and the transverse pa[l(tng;,)(t»] is larger than the longitu-
dinal part( ng;)(t» in the large positive Lyapunov exponent V. DENSITY DEPENDENCE OF THE LARGEST
region while the reverse is true in the small positive LYAPUNOV EXPONENT AND RELATED QUANTITIES
Lyapunov exponent region. In the low density limit the mo-
mentum part 7)) (t)) and( () (t)) are extremely small so
the spatial part§,{)(t)) and(7{)(t)) are almost symmet-
ric in the liney=0.5 as required by the normalization con-
dition (20). It should be emphasized that in the Lyapunov
index of the linear dependendeCD] of the localization

widths the quantitieg{)(t)) and(»{}(t)) are rather flat,

As we have already shown in Sec. lll, the linear depen-
dence[LD] of localization widths as a function of the
Lyapunov index appears at low density, but it was not clear
at what density the linear dependef&® | of the Lyapunov
localization first appears as the particle dengitgeceases
from 1. In this section we discuss this problem by calculating
the density dependences of the largest Lyapunov exponent,

sr?own in the gray rtt)agion in ;ig' '}jd) We can showfthr?t the angle and amplitudes of Lyapunov vector components,
these asymmetries between th@ndy components of the 54 the |ocalization width, which correspond to the largest

Lyapunov vectors actually come from its narrow rectangular y o noy exponent. Especially, we show that the particle
shape, because as shown in Appendix B such asymmetri nsity region in which the linear dependefi¢g® | appears

dp not appear in the square system, although the asymmfg almost the same as the density region in which the largest
tries between the spatial and momentum parts of th?_

Lyapunov vectors still exist there. yapunov exponent begins to satisfy the Krylov relation.

As a second point, Fig. 11 also shows some characteristics
of the time-averaged amplitudes of the Lyapunov vector
components corresponding to the stepwise region of the Figure 12 shows the largest Lyapunov exponefit as a
Lyapunov spectra. In Fig. 11 we can see flat parts consistinfunction of the density in the quasi-one-dimensional sys-
of two-points(four-pointg for the time-averaged normalized tem. In this figure we show the numerical error at each data
amplitudes( 7 (1)), (7{7(1)), (7$P(t)) and (5 (1)) of ~ point as an error bar. Clearly the value of the largest
the Lyapunov vectors, which correspond to the two-pointLyapunov exponent at very low densities is less accurate
steps (the four-point stepsof the Lyapunov spectrgsee than that at higher densities. The gray region in this figure is
Figs. 11a)-11(d) in the region of the Lyapunov index the density region in which the linear dependef®] of
aroundn/(2N)>0.9, as well as the small panels in the top the localization widths appears.

A. Largest Lyapunov exponent

nght of these figures for en|arged momentum paﬂgy(t)> It is known that (::-I; the low denSity limit the Iargest
and (7{)(t)) in the small positive Lyapunov exponent re- Lyapunov exponerk ™ should have the form

gions. Values of the two-point steps of the transverse part A~ apn 23
(n)(t)) and(7{(t)) of the Lyapunov vectors correspond- apIn(Bp) @3

ing to the two-point steps of the Lyapunov spectra are largewith parametersr and 8. Equation(23) is called the Krylov
than their longitudinal part$77g; (1) and(ng}((t» in Figs.  relation[41] and has already been demonstrated numerically
11(a)—11(d). On the other hand, values of the four-pointin a fully two-dimensionalthree-dimensionalsystem con-
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FIG. 13. Mean free timer; as a function of density. The
dotted line is a plot of the fitting functiog= 1/(u;,yx) with the

ticle densityp. The gray region is the density region in which the . - L
. o . - thermal velocityu,, and the fitting parametey. The gray region is
linear dependendeLD] of the localization widths as a function of the density region in which the linear dependefig®] of the

the Lyapunov index appears. Numerical data are fitted by the Kry- o : . -
lov relation A\~ apln(Bp) (solid line) and the power functiory localization widths as a function of the Lyapunov index appears.

:a’pB' (dashed ling with fitting parametersy, 8, «’, and8’.
The error bar in each data point is given by the absolute value

2D+ 14N or twice of the sum of the largest and the smallest
Lyapunov exponent.

FIG. 12. Largest Lyapunov exponekt?) as a function of par-

AN~ —ugyp In(Ryp), (25)

using a constany of |~ (yp) 1. Comparing Eq(25) with
Eq. (23) we obtain the relation

sisting of many-hard-disksmany-hard-sphergs[31,42,
apart from a factor. In Fig. 12 we fitted the numerical data to
the Krylov relation (23) with parameter valuesa=
—1.66875 and3=1.28252(the solid ling, which gives a o .
good fit for the density dependence of the largest LyapunoWhich is independent of the value of the constantUsing
exponent. It is important to note that the density regionthe parameter values;,=+2 andR=1 in our numerical
where the largest Lyapunov exponent satisfies the Krylogalculations, we obtain/ S~ —\2=—1.412 ..., which is
relation almost exactly coincides with the density region inconsistent with the values of the fitting parameterand g
which the linear dependeng€D] of the localization widths  in Fig. 12:a/=—-1.301 . ...
appears. To test the Krylov relatid@3), we also tried to fit Next we proceed to estimate the factpr(I1p) ~* from
the numerical data by a power Iayv:a’pﬁ' (dashed ling Fig. 13, the .graph of the_ mean free ti.me as a function pf the
with fitting parameterse’ and 8’ in Fig. 12. We used the density. Notmg the relatlohf~uthrth_, in this figure we _flt-
parameter valuea’ =2.551 26 ang3’' =0.808 158, and it is t€d the numerical data by the functigr=1/(uy, yx) obtain-
shown in Fig. 12 that the Krylov relatiof23) gives a better N9 the valuey=13.341 for the fitting parametey. (We
fit than this power law in the gray region. emphas!zed that this functlon gives a nice fit in the density
Now we check the values of the fitting parameterand ~ €gion in which the linear dependendeCD] of the
B used to fit the graph of Fig. 12 by following the rough Lyapunov localization appeajs.However this valuey
derivation of the Krylov relation in Ref1]. (Note that more = 13-341, which isg in Eq. (23) in the case ofR=1, is
exact derivations are known for some specific systems, suciPout ten times as large as the fitting valugsotised to fit
as the Lorentz gas, etc. See, for example, Rd&44).) First ~ the graph of Fig. 12. It may be noted that in order to derive
we note that aften, particle collisions the amplitude of a €XPression(25) for the largest Lyapunov exponent we ne-
Lyapunov vector is stretched by a factdr [R)™ approxi- glected some characteristics of the quaS|.-one—d|_menS|_onaI
mately withl; the mean free path. Introducing the collision SYStéms, such as the fact that in the quasi-one-dimensional
rate v=n, /t to connect the mean free pathwith the timet system with a large value of the paramedegrarticles collide

we estimate the largest Lyapunov exponent as mainly head on and it is rather rare for particles to have
grazing collisions with other particles. We should take these

points into account to get a more precise expressions for the
parametersy and 8 in Eq. (23) than in Eq.(25).

—— (26)

n[_ I ¢
=vin=. (29

1 [l
W~ im ZInl =
N lim In( =

t—+x R

We approximate the collision rate by a thermal velocity B. Angle and amplitudes of Lyapunov vector components

Uin=+(2/M)(K/N) asv~u,,/l; because oti;,t~n;, and
assume that the mean free phtlis inversely proportional to
the densityp, so we obtain

As the next example we consider the angf€ defined by
Eq. (15 between the spatial and momentum parts of the
Lyapunov vector corresponding to the largest Lyapunov ex-
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FIG. 14. The density dependence of the time-averae)/ o LX X X X XX XX XX¥ AN B
the angle between the spatial and momentum part of the Lyapunov 10° 0.0001 0.001 0.01 0.1 1
vector of the largest Lyapunov exponent as a function of the particle
densityp. The gray region is the density region in which the linear p

dependencé D] of the localization widths as a function of the
Lyapunov index appears. The inset: The same graph but includingc
the angled™™ at lower density.

FIG. 15. The time averages of the normalized amplitudes of the
omponent of the spatial pe{r{tngf()(t)), circleg, they component
of the spatial par[(ngly)(t)), triangled, the x component of the
énomentum par[(n(lx)(t)), pluse$, and they component of the

ponent. Figure 14 is the graph of the time average of th . omentum par[(nﬁ,y’(t», crossebof the Lyapunov vector of the

angle ¢/ as a function of particle densiy. The graph largest Lyapunov exponent as functions of the particle density

has a local maximum pOIn_t at_ abmo'z’ W.hICh is close to The gray region is the density region in which the linear depen-
the value of particle density in which the linear dependenceaence[ﬁD] of the localization widths as a function of the

[LD] of the localization widths starts to appear as the dengyanunov index appears.

sity decreases from 1. As we have already discussed in Secs.

Il and I11, the existence of the linear dependefic®] of the  verse componentsy()(t)) and(7{)(t)) are always larger
localization widths can be checked by the linear dependencean the longitudinal components;{;)(t)) and (7{(1)),

of the localization widths on the Lyapunov index and therespectively.

rectangular shape of the amplitude of the Lyapunov vector,

but it is rather hard to use this criterion to distinguish the C. Localization width

density region of the linear dependerja8D ], because it is L . .

not easy to recognize these behaviors in an intermediate re- AS the last quantity in this section, we consider the den-

gion between the density region of the exponential depensity dependence of the Lyapunov localization width corre-

dence[ £D] only and the density region of both the depen_sponding to the largest Lyapunov exponent. Figure 16 is the

denced £D] and[ £D]. In this sense the graph of the angle _graph of the Lyapunov localization widt"/N normal-

9V as a function of particle density may give a more 128d by the particle numbeN as a function of density.
distinct criterion to distinguish the density region in which Th's flgurg Sh_OWS that n t(?)e low density limit the normal-
the linear dependenceCD] appears. It is noted that the 2€d localization width/W*/N goes to the value B

angle 62 does not seem to go to zero in the low density(:0'04) (solid line in Fig. 16, which is discussed as the
limit as shown in the inset to Fig. 14. minimum localization widthW,,;,/N in Sec. Il. But it is not

Next in Fig. 15, we consider the density dependence of© clear from this figure how to distinguish the density re-
the time average of normalized amplitude of theompo- gion in which the linear dependengéD ] of the localization

nent and they component of the spatial part and the momen-Widths appears.

tum part of the Lyapunov vector corresponding to the largest

Lyapunov exponent, which are defined by EGs) and(19) VI. CONCLUSION AND REMARKS
in n=1. This may not be a good criterion to distinguish the
density region of the linear dependenj@@d ], but it is clear
that in the density region of the linear dependeh€B ] the

. ; dimensional systems consisting of many hard digk#h
spatial parts of the Lyapunov vector are dominant and a 988eriodic boundary conditions except in Appendix B Bhe
appears between itsscomponent &

ax (1)) and they compo- g asi-one-dimensional system was introduced as a particle
nent(7:)(t)). On the other hand, in the high density region system whose shape is a very narrow rectangle that does not
in which the linear dependen¢e D ] does not appear, the allow the interchange of particle positions. We compared
momentum partg nﬁ,lx)(t» and (nﬁ,ly)(t» of the Lyapunov some methods to characterize the localized behavior of the
vector are dominant. It should be noted that at the low dentyapunov vectors, and one such method used in this paper
sity in which the linear dependenf€D] appears, the trans- defines a quantity called the localization width, whose loga-

In this paper we have discussed localized behaviors of
Lyapunov vectorsthe Lyapunov localizationfor quasi-one-
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Woan/ N{(=008)  —— ing to the linear dependen¢€D] and showing a rapid de-

0.25 ' ' ' ‘ © creasing dependence of the Lyapunov indexy. 9). It was
also shown that differences between the exponential depen-
02 r 1 dence[ D] and the linear dependen€€D] appear in the
angle (" between the spatial and momentum parts of the
0.15 I ] Lyapunov vectorgFig. 10 and in the amplitudes of the
andy components of the spatial pdifig. 11(d)]. (Here we
@ took they direction as the narrow direction of the rectangle
01§ ® | and thex-direction as the longer orthogonal directipithe
& o° density region, in which the linear dependefi¢@®] of lo-
i calization widths appear, almost exactly coincides with the
region in which the density dependence of the largest
- - - - - Lyapunov exponenh ) satisfies the Krylov relatiorFig.
10°  0.0001 0.001  0.01 0.1 1 12). We also indicated that at the boundary of the density
P region of the exponential dependenic€D] only and the
density region of both the linear dependef¢®d ] and the
FIG. 16. The normalized localization Wldw(l)/N for the Iarg— exponentia| dependen@éD]’ the ang'eg(l) Corresponding
est Lyapunov exponent as a function of dengityrhe solid line is g the largest Lyapunov exponent shows a local maximum as
the minimum value of the normalized localization widW,;,/N a function of particle densityFig. 14.
=0.04. The gray region is the d.ensit)./ region in Which the linear In this paper we observed differences in the amplitudes of
dependenc_:@ﬁD] of the localization widths as a function of the the x andy components of the Lyapunov vectofigs. 11
Lyapunov index appears. and 15. These differences come from the difference in the
roles of the directions in the quasi-one-dimensional systems.
rithm is given by an entropy for the amplitude distribution of We also observed differences in the amplitudes of the spatial
the Lyapunov vector components of each particle. The localand momentum parts of the Lyapunov vectors. In the region
ization width indicates the number of particles contributingwhere the Lyapunov spectra are changing smoothly the am-
to the localized part of the Lyapunov vector. It could not only plitude of the spatial part of the Lyapunov vectors is larger
be used as an indicator to measure the magnitude of th@mallej than that of the momentum part in lofnigh) den-
localized behavior of the Lyapunov vectors, but also it can besity casegFigs. 11, 15, and 20The spatial and momentum
used to distinguish different delocalized properties of theparts of the Lyapunov vectors are in almost the same direc-
Lyapunov vectors such as the delocalization associated wittion at high density, whereas they are rather close to orthogo-
a random distribution of particle component amplitudes, anal in the low density case, especially in the region of the
delocalization associated with a uniform distribution, and aexponential dependengé€D ] of the localization widths as a
delocalization associated with a wavelike structizerre-  function of Lyapunov indexXFigs. 10 and 1@ These behav-
sponding to stepwise structure of the Lyapunov spegctraiors are found not only in the quasi-one-dimensional systems
(Figs. 3 and 4 The localized region of the Lyapunov vectors but also in the square systefig. 20. Concerning the step-
is related to the positions of colliding particléBig. 5), and  wise region of the Lyapunov spectra, as shown in Fig. 11, the
this leads to the lower bound 2 for the localization width amplitudes of thgy componenttransverse componerdf the
(Figs. 7 and 1% Using the localization width we showed spatial and momentum parts of the Lyapunov vectors are
that there are two kinds of the Lyapunov localizations inlarger than the correspondingcomponentgtheir longitudi-
many-hard-disk systems. The first type of the Lyapunov lo-nal componenisin the two-point steps of the Lyapunov
calization is that characterized by an exponential dependenapectra, whereas they are opposite in four-point steps of the
[ED] of the localization width as a function of the Lyapunov Lyapunov spectriexcept in very low density cases as in Fig.
index (Fig. 6), and by its long tail of localized Lyapunov 11(d)].
vectors[Fig. 2(a)]. This type of the Lyapunov localization is Microscopic chaos plays an essential role in the statistical
observed at any particle density. The second type of théreatments of deterministic dynamical systems, but it has also
Lyapunov localization is characterized by the linear depenbeen noted that chaos is not a necessary condition for some
dence[ LD] of the localization widths as a function of the particular statistical behaviofd5,46. For instance, ergodic-
Lyapunov index(Fig. 7), and by the sharp rectangular shapeity does not require the system to be chaotic, and numerical
of the localized Lyapunov vectof§-igs. 2b) and 8. This  work suggests that even some nonchaotic systems may ex-
type of Lyapunov localization appears only in low density hibit the mixing property and thus guarantee the decay of
cases and in Lyapunov indices corresponding to the largesorrelations[47]. It has also been observed that nonchaotic
Lyapunov exponentéin absolute value We showed that in  systems can show diffusive behav[di8—52, Fourier’s law
the density region of the linear dependefg® | of the lo-  of heat conductio52], and satisfy the fluctuation theorem
calization widths the Lyapunov spectra are bent and sepd53], which have all been regarded as important statistical
rated into two partgexcept for the stepwise region of the properties of dynamical systems. As another example, many-
Lyapunov spectna one corresponding to the exponential de-parti