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Localized behavior in the Lyapunov vectors for quasi-one-dimensional many-hard-disk systems
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~Received 14 April 2003; published 13 October 2003!

We introduce a definition of a ‘‘localization width’’ whose logarithm is given by the entropy of the distri-
bution of particle component amplitudes in the Lyapunov vector. Different types of localization widths are
observed, for example, a minimum localization width where the components of only two particles are domi-
nant. We can distinguish a delocalization associated with a random distribution of particle contributions, a
delocalization associated with a uniform distribution, and a delocalization associated with a wavelike structure
in the Lyapunov vector. Using the localization width we show that in quasi-one-dimensional systems of many
hard disks there are two kinds of dependence of the localization width on the Lyapunov exponent index for the
larger exponents: one is exponential and the other is linear. Differences due to these kinds of localizations also
appear in the shapes of the localized peaks of the Lyapunov vectors, the Lyapunov spectra, and the angle
between the spatial and momentum parts of the Lyapunov vectors. We show that the Krylov relation for the
largest Lyapunov exponentl;2r ln r as a function of the densityr is satisfied~apart from a factor! in the
same density region as the linear dependence of the localization widths is observed. It is also shown that there
are asymmetries in the spatial and momentum parts of the Lyapunov vectors, as well as in theirx and y
components.

DOI: 10.1103/PhysRevE.68.046203 PACS number~s!: 05.45.Jn, 05.45.Pq, 02.70.Ns, 05.20.Jj
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I. INTRODUCTION

The dynamical instability of a system is essentially co
nected to the unpredictability of that system. It is describ
by the time evolution of the difference of two phase spa
vectors describing nearby trajectories, the so ca
Lyapunov vector. If the amplitude of the Lyapunov vect
increases~decreases! rapidly in time, then the dynamics i
unstable~stable! in the direction of the Lyapunov vector. A
unstable orbit implies that a part of the dynamics is unp
dictable and a statistical treatment may be required.
Lyapunov exponent, defined as the rate of exponential di
gence or contraction of the amplitude of the Lyapunov vec
with time, is the most frequently used indicator of the d
namical linear instability, and a system with a nonzero po
tive Lyapunov exponent is called chaotic. The Lyapunov
ponent is connected to the transport coefficients, such as
conductance and viscosity@1#. In general, for each Lyapuno
vector there is an individual Lyapunov exponent that is d
ferent in magnitude, and this leads to the concept of a so
set of Lyapunov exponents, the so called Lyapunov sp
trum.

Although the significance of theamplitudes of the
Lyapunov vectors has been emphasized in the discussio
the dynamical instability, the Lyapunov vector itself inclu
ing the information about itsangle can play an importan
role in chaotic dynamics@1,2#. For example, the Lyapuno
vector was used to characterize a high-dimensional cha
attractor@3# and the clustered motion in symplectic coupl
map systems@4#. One may also mention that the wavelik
structure of the Lyapunov vectors associated with the s
wise structure of the Lyapunov spectra in the small~in abso-
lute value! Lyapunov exponent region has been reported
many-hard-disk systems@5–8#.

The localization of the Lyapunov vector for high
dimensional chaos, which we call the ‘‘Lyapunov localiz
1063-651X/2003/68~4!/046203~22!/$20.00 68 0462
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tion’’ for convenience in this paper, is one of the chao
behaviors which involves information on all the individu
components of the Lyapunov vectors. The Lyapunov loc
ization appears as the spatial localization of the largest c
ponents of the Lyapunov vector and is generally associa
with the largest Lyapunov exponents. This phenomenon
been reported in the Kuramoto-Sivashinsky model@9#, in
coupled map lattice systems@10–12#, in a random matrix
model @13#, in high-dimensional symplectic map system
@14#, in many-hard-disk systems@15,16#, etc. However it was
not clear whether the Lyapunov localization has its origin
a randomness produced by the chaotic dynamics@17# ~such
as Anderson localization@18#! or if it comes simply from the
short range property of particle interactions. For an und
standing of Lyapunov localizations in coupled map latti
models and some nonlinear partial differential equations
method using an analogy with the Kardar-Parisi-Zhang eq
tion has been proposed@19,20#, although this analogy is no
universal as shown by some Hamiltonian systems such
nonharmonic oscillator chain models@21#. Moreover, the
physical meaning and significances of this phenomeno
not well understood. One of the few suggestions about
importance of the Lyapunov localization is that it may
related to the existence of the thermodynamic limit for t
largest Lyapunov exponent@15#. If the spatial localized re-
gion of the Lyapunov vector corresponding to the larg
Lyapunov exponent is independent of the number of partic
N in the thermodynamic limit, then the largest Lyapun
exponent can beN independent. This implies that th
Kolmogorov-Sinai entropy, which is equal to the sum of
the positive Lyapunov exponents in closed systems, is
extensive quantity like the thermodynamic entropy. Besid
this gives some supporting evidence to the existence of
thermodynamic limit of the Lyapunov spectrum, which h
been the subject of study in many-particle chaotic syste
@9,22–24#.
©2003 The American Physical Society03-1
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The principal aim of this paper is to use the Lyapun
localization as an indicator of the chaotic properties of ma
particle systems. For quantitative considerations of
Lyapunov localization we use an entropylike quantity~or
information dimension! of a distribution function of the am
plitudes of the Lyapunov vector components for each part
@11,14#. We introduce the ‘‘localization width’’ as the quan
tity whose logarithm is given by this entropylike quantit
The value of the localization width is in the range@1,N# and
indicates the number of particles contributing to the localiz
part of the Lyapunov vector components. Using the locali
tion width we can also distinguish different types of deloc
ized behaviors of the Lyapunov vectors, such as a delo
ization associated with a random distribution of partic
component amplitudes, a delocalization associated wit
uniform distribution and a delocalization associated with
wavelike structure in the Lyapunov vector. As a concr
system to consider for the study of Lyapunov localizatio
we use a quasi-one-dimensional system consisting of m
hard disks, in which the system shape is so narrow a
exclude the exchange of particle positions. In this system
minimum value of the localization width is given by 2, b
cause particle interactions are given by collisions betw
two particles. In the quasi-one-dimensional systems each
ticle can interact only with its nearest-neighbor particles,
the numerical calculation is less time-consuming than fo
fully two-dimensional hard-disk system in which each p
ticle can collide with any other particle. The quasi-on
dimensional system also has the advantage that the role
the coordinate directions are strongly separated. In our
tem the narrow direction~the y direction! of the rectangle is
very much different from the longer orthogonal direction~the
x direction!. Another advantage of the use of the quasi-o
dimensional system is that there is a wider region of stepw
structure in the Lyapunov spectrum compared to a squ
two-dimensional system with the same number of partic
and the same area@25#. This is a noticeable point because
this paper we show that the localization width is an indica
not only of the Lyapunov localization but also of the ste
wise structure of the Lyapunov spectrum. Calculating
localization width in quasi-one-dimensional systems
show that there are two kinds of dependence of
Lyapunov index on the localization widths: an exponen
dependence@ED# and a linear dependence@LD#. ~Here we
define the Lyapunov spectrum as the s
$l (1),l (2), . . . ,l (4N)% of the Lyapunov exponents satisfyin
the condition l (1)>l (2)>•••>l (4N) and introduce the
Lyapunov index as the ordering number of the exponent
the Lyapunov spectrum.! The exponential dependence@ED#
of the localization width appears at any particle density, a
shows a tail in the spatial localized shape of the Lyapun
vector. On the other hand the linear dependence@LD# of the
localization widths as a function of Lyapunov index appe
only in cases of low particle density, and is characterized
a sharp rectangular localized shape of Lyapunov vecto
space. Next, we consider the effects of the these two kind
Lyapunov localizations on other quantities, such as the sh
of the Lyapunov spectra, the angle between the spatial
and the momentum part of the Lyapunov vector, the am
04620
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tudes of the spatial part of the Lyapunov vector, etc. In p
ticular, it is shown that apart from a prefactor the Krylo
relation @41# for the largest Lyapunov exponentl;2r ln r
as a function of the particle densityr is satisfied in the same
density region in which the linear dependence@LD# of the
localization widths appears. We also demonstrate a rela
between localized regions of the Lyapunov vectors and
positions of colliding particles, suggesting that the Lyapun
localization comes from the short range interaction of
particles. We compare some of our results in quasi-o
dimensional systems with the square system with the s
area and show that the two kinds of localizations appea
the square case as well.

As the second aim of this paper we investigate how
particle density and system shape affect the Lyapunov ve
components. We show that the spatial part and the mom
tum part of the Lyapunov vectors are in almost the sa
direction at high density, whereas they are rather close
orthogonal in low density cases, especially in the region
the exponential dependence@ED# of the localization widths
as a function of Lyapunov index. The amplitudes of the s
tial part of the Lyapunov vectors are larger~smaller! than the
corresponding momentum part in low~high! density cases.
We also demonstrate that gaps appear in the amplitude
thex andy components of both spatial and momentum pa
of the Lyapunov vectors, because of the difference in role
these directions in the quasi-one-dimensional system. In
amplitudes of the Lyapunov vector components we can a
see effects due to the stepwise structure of the Lyapu
spectra.

The outline of this paper is as follows. In Sec. II w
compare some quantities that characterize the Lyapunov
calization and discuss the relative merits of the localizat
width comparing it with the other quantities. The relatio
between the localized region of Lyapunov vectors and
position of colliding particles is demonstrated. In Sec. III w
show that there are two kinds of Lyapunov localization
These two Lyapunov localizations are distinguished by th
Lyapunov index dependences and the shapes of the loca
peaks of the Lyapunov vectors. In Sec. IV we investigate
effects of the two kinds of Lyapunov localizations on th
shape of the Lyapunov spectra and the angles and amplit
of the Lyapunov vectors components, etc. The Lyapunov
dex dependence of thex andy components of the spatial pa
and the momentum part of the Lyapunov vectors are sho
In Sec. V we investigate the density dependences of qua
ties associated with the largest Lyapunov exponent suc
the largest Lyapunov exponent itself, the angle of t
Lyapunov vectors and the localization width, etc., a
specify the density region in which the linear dependen
@LD# of the localization width on Lyapunov index appear
The region of Lyapunov indices, in which the linear depe
dence@LD# of the Lyapunov widths appears, is connected
the region in which the Krylov relation for the density d
pendence of the largest Lyapunov exponent is satisfied. S
tion VI is our conclusions and further remarks. In Append
A we give a derivation of an inequality for the localizatio
width. In Appendix B we compare some results for the qua
3-2
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LOCALIZED BEHAVIOR IN THE LYAPUNOV VECTORS . . . PHYSICAL REVIEW E 68, 046203 ~2003!
one-dimensional systems in the text with those of cor
sponding square systems.

II. LOCALIZATION WIDTH OF LYAPUNOV VECTORS

We consider the quasi-one-dimensional system that c
sists ofN hard-disks with radiusR. The shape of the system
is a two-dimensional rectangle satisfying the condition

RNA3,Lx and 2R,Ly,4R, ~1!

with width Lx and heightLy . Condition ~1! means that the
system is so narrow that the positions of particles canno
exchanged. The systems satisfying this condition are refe
to as quasi-one-dimensional systems in this paper. The s
matic illustration of such a system is given in Fig. 1. T
quasi-one-dimensional system was used to discuss the
wise structure of the Lyapunov spectra and the associ
wavelike structure of the Lyapunov vectors in Ref.@25#.

In this paper we consider the case where the param
values are given by the radius of particles,R51; the mass of
particles,M51; and the total energy of system,E5N. The
system size is given byLy52R(111026) and Lx5NLy(1
1d) satisfying condition~1! with a constantd ~except in
Appendix B where we consider square systems.! Roughly
speaking, the factor 11d is the averaged ratio of the dis
tances that each particle can move in thex direction and the
y direction. The constantd is connected to the density

r[
NpR2

LxLy
5

pR2

~11d!Ly
2

~2!

asd5pR2/(rLy
2)21 @26#.

The quasi-one-dimensional many-hard-disk system
many advantages for numerical investigations of the dyna
cal properties of many-particle systems. First, in many-ha
disk systems the free flight part of the dynamics is integra
so the actual numerical calculations of phase space dyna
and tangent space dynamics are simply described by m
plications of the time-evolutional matrices corresponding
free flight and collision. Second, in the quasi-on
dimensional system defined by Eq.~1! each particle can only
collide with its two nearest-neighbor particles, so we do
need to search every particle pair to find the colliding p
These points lead to a faster numerical calculation of
dynamical properties~especially Lyapunov spectra an
Lyapunov vectors! than for other many-particle system
such as fully two-dimensional particle systems~in which any
pair of particles can collide! or with particles with soft-core
interactions. Another advantage of the quasi-o

FIG. 1. The quasi-one-dimensional system that we consider.
system shape is so narrow that the particles always remain in
same order.
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dimensional system is that the roles of thex andy directions
are separated, so we can investigate how such a sepa
role for the directions affects, for example, the Lyapun
exponents and Lyapunov vectors. In the quasi-o
dimensional system the particle positions are roughly equ
lent to the particle indices, so we can discuss the dynamic
quantities using three-dimensional graphs as functions of
collision number and particle index, which is much simp
than the full of two-dimensional system that requires fo
dimensional graphs as functions of the time, thex and y
components of particle positions. Finally in quasi-on
dimensional many-hard-disks, we get a wider stepwise
gion of the Lyapunov spectra rather than in the fully tw
dimensional square systems. This was an essential poin
the study of the stepwise structure of Lyapunov spectra
the associated wavelike structure of the Lyapunov vector
systems with small numbers of particles in Ref.@25#.

We introduce the Lyapunov vector asdG(n)(t)
[„dG1

(n)(t),dG2
(n)(t), . . . ,dGN

(n)(t)… corresponding to the
n-th Lyapunov exponentsl (n) at timet. Here,dGj

(n)(t) is the
Lyapunov vector component corresponding to thej th par-
ticle and the Lyapunov exponentl (n) at timet. We define the
normalized amplitudeg j

(n)(t) of the Lyapunov vector com-
ponentsdGj

(n)(t) by

g j
(n)~ t ![

udGj
(n)~ t !u2

(
k51

N

udGk
(n)~ t !u2

, ~3!

so that the conditions

(
j 51

N

g j
(n)~ t !51, ~4!

0<g j
(n)~ t !<1 ~5!

are automatically satisfied. Figures 2~a! and 2~b! are two
typical behaviors of the Lyapunov vector components for
largest Lyapunov exponent as functions of the collision nu
ber nt and the particle indexj for ~a! d51.5 ~or densityr
50.314 . . . ) and ~b! d5105 ~or density r
50.000 007 85 . . . ). Here we take the particle indexj so
that thex-componentqx j(t) of the j th particle satisfies the
conditionqx1(t0),qx2(t0),•••,qxN(t0) at the initial time
t5t0 and the data are taken every two collisions.~It should
be noted that the collision numbernt is related to the timet
approximately by multiplying by the mean free time, and
the quasi-one-dimensional system the particle indexj has a
similar meaning to thex component of the particle position.!
These graphs show clearly that a nonzero value of the qu
tity g j

(1)(t) is localized in a small spatial region involving
few particles. Localized peak positions stay in almost
same position over several tens of collisions, then seem
hop to another position. Details of the localized behaviors
the quantityg j

(1)(t), especially the differences between Fig
2~a! and 2~b!, will be discussed in the following sections an
are the main purpose of this paper.

e
he
3-3
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To obtain our numerical results we use the algorithm
veloped by Benettinet al. @27# and Shimada and Nagashim
@28#. This algorithm is characterized by intermittent reo
thogonalization and renormalization of Lyapunov vecto
which can be done after each particle collision in a ma
hard-disk system. Other papers such as Refs.@29–31# should
be referred to for more details of this algorithm and t
Lyapunov vector dynamics of many-hard-disk systems.

Now we discuss methods to characterize the strengt
the localization of the Lyapunov vectors as those in Fi
2~a! and 2~b! in a quantitative sense. By analogy to the l
calization length used in Anderson localization@18# it may
be suggested that the strength of the Lyapunov localiza
can be characterized by a localization lengthV (n) defined by

@V (n)#21[ lim
j→`

lim
N→`

j 21^ ln g j
(n)~ t !& ~6!

as the number of particlesN goes to infinity, namely, in the
thermodynamic limit. Here we use the bracket^X& to signify
the long time average of the time-dependent quantityX.
@Note that in definition~6! of the localization lengthV (n) we
used the fact that the system is quasi-one-dimensiona
more general cases, such as a fully two-dimensional sys
the limit j→` in Eq. ~6! must be replaced by the limit of th

FIG. 2. Localized behaviors of the amplitudesg j
(1) of the nor-

malized Lyapunov vector components of thej th particle corre-
sponding to the largest Lyapunov exponentl (1) as functions of the
collision number nt and the particle indexj in a quasi-one-
dimensional system ofN550 for ~a! high densityd51.5 and~b!
low densityd5105.
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amplitude of the spatial coordinate.# This quantityV (n) char-
acterizes the Lyapunov localization as its spatial exponen
decay rate. However this quantity may not be suitable
characterize the localization as that in Fig. 2~b! which does
not have an exponential decay. Besides, this quantity requ
the thermodynamic limitN→`. The numerical calculation
of the Lyapunov spectrum and Lyapunov vectors for ma
particle systems is very time-consuming and has so far o
been reported for systems of about 1000 particles@16#, so it
may be rather difficult to estimate the quantityV (n) defined
by Eq. ~6! numerically.

Another method to characterize the Lyapunov localizat
was proposed in Ref.@15#. In this method we first introduce
a parameter thresholdQP(0,1) and define the quantityCQ

(n)

as

CQ
(n)[min

x
H x;Q,(

j 51

Nx

^g̃ j
(n)~ t !&J ~7!

with an integerNx and the sorted set

$g̃1
(n)~ t !,g̃2

(n)~ t !, . . . ,g̃N
(n)~ t !%

5$g1
(n)~ t !,g2

(n)~ t !, . . . ,gN
(n)~ t !%

satisfying the conditiong̃1
(n)(t)>g̃2

(n)(t)>•••>g̃N
(n)(t). This

quantityCQ
(n) is a measure of the number of particle comp

nents actively contributing to a localized part of th
Lyapunov vector for thenth Lyapunov exponentl (n). This
quantityCQ

(n) does not require the thermodynamic limit, an
can be suitable for both types of the Lyapunov localizatio
shown in Fig. 2. However this quantity is a function of a
artificial thresholdQ, which cannot be determined by th
dynamics itself.

In this paper we discuss the Lyapunov localization
using an entropylike quantity for the amplitude distributio
g j

(n)(t) of the normalized Lyapunov vector elements, name
the entropylike quantityS(n) defined by

S(n)[2(
j 51

N

^g j
(n)~ t !ln g j

(n)~ t !&, ~8!

noting that the quantityg j
(n)(t) satisfies conditions~4! and

~5! so it can be regarded as a kind of distribution functio
Using this quantityS(n) we introduce the quantityW (n) as

W (n)[exp$S(n)%, ~9!

which we call thenth ‘‘localization width’’ corresponding to
thenth Lyapunov exponentl (n). This localization width has
already been used to discuss the Lyapunov localization
coupled map lattice model@11# and a high-dimensional sym
plectic map system@14#.

To understand the physical meaning of the localizat
width W (n) defined by Eq.~9! it is useful to discuss some o
its properties. The first property of the localization width
the inequality

1<W (n)<N. ~10!
3-4
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The derivation of inequality~10! is given in Appendix A.
The second property of the localization widthW (n) is that
the equalityW (n)51 is satisfied only when one of the qua
tities g j

(n)(t), j 51,2, . . . ,N is equal to 1, namely, in the
most localized case, and the equalityW (n)5N is satisfied
only when all of these quantities are equal to each ot
namely, g1

(n)(t)5g2
(n)(t)5•••5gN

(n)(t)51/N, namely, in
the most delocalized case~see Appendix A about this point!.
These properties suggest that the localization widthW (n)

also indicates the number of particles contributing to the
calized part of the Lyapunov vector, which is analogous
the quantityNCQ

(n) derived from Eq.~7!. The third property
of the localization width comes from the symplectic structu
of the Hamiltonian dynamics. To discuss this property
note the conjugate relation@1#

dGj
(4N2n11)[S dqj

(4N2n11)

dpj
(4N2n11)D 5j (n)S dpj

(n)

2dqj
(n)D ~11!

for the Lyapunov vector componentdGj
(4N2n11) of the j th

particle corresponding to the (4N2n11)th Lyapunov expo-
nent

l (4N2n11)52l (n), ~12!

n51,2, . . . ,2N, wheredqj
(n) and dpj

(n) are the spatial par
and the momentum part of the Lyapunov vectordGj

(n) of the
j th particle, respectively, andj (n) is a constant depending o
the Lyapunov index only.@As a remark, if we use the Ben
ettin algorithm to calculate the Lyapunov spectra, which
characterized by the intermittent normalization~as well as
the reorthogonalization of Lyapunov vectors, the factorj (n)

in Eq. ~11! is given by 11 or 21 depending on the
Lyapunov indexn.# From Eqs.~3! and ~11! we derive

g j
(4N2n11)~ t !5g j

(n)~ t ! ~13!

at any time t, where j is the particle index andn
51,2, . . . ,2N is the Lyapunov index. Equations~8!, ~9!, and
~13! lead to the third property of the localization width

W (4N2n11)5W (n). ~14!

This is the conjugate property for the localization wid
W (n).

Some of the advantages and disadvantages of the us
the localization widthW (n) to discuss the Lyapunov loca
izations are as follows. An advantage of the localizat
width W (n) is that its calculation does not require the the
modynamic limit, different from the localization lengthV (n)

defined by Eq.~6!. Besides, the localization widthW (n) is
applicable to the Lyapunov localization seen in Fig. 2~b!,
whereas the localization lengthV (n) requires that the tail of
the quantityg j

(n)(t) decay exponentially in space. Moreov
the localization widthW (n) does not require an artificial pa
rameter such as the thresholdQP(0,1) in the quantityCQ

(n)

defined by Eq.~7!, so it can be determined from the dynam
ics only. On the other hand, a disadvantage of the local
tion width W (n) is that using this quantity, for example, w
04620
r,

-
o

e

s

of

n
-

a-

cannot distinguish betweenonepeak of heighta and width
2b with constantsa and b and two peaks of heighta and
width b which should be recognized as different localiz
behaviors. Therefore, in principle we have to look at t
concrete shapes of localized peaks to check the relation
tween this localization width and the peak width in actu
numerical calculations, even if we calculate the localizat
width of the Lyapunov vector. The quantityCQ

(n) defined by
Eq. ~7! also has the same disadvantage.

Figure 3 are examples of graphs of localization widths

FIG. 3. Normalized localization widthsW (n)/N in the case of
d50.5. The circles, triangles, and squares correspond to the c
of N525, 50, and 100, respectively. The dash-dotted line, so
line, and dashed lines~and the dotted line! correspond toW (n)

5Wwav ('0.736N), Wran ('0.651N) and Wmin (52), respec-
tively. ~a! Full scale of the normalized localization widths as fun
tions of the normalized Lyapunov indexn/(2N). ~b! An enlarged
graph of the normalized localization widths corresponding to
small positive Lyapunov exponent region as functions of
Lyapunov indexn. Symbols with a gray-filled background corre
spond to the two-point steps of the Lyapunov spectra which
indicated by similar circles in Fig. 4. Symbols surrounded by
rectangle of dashed lines correspond to the four-point steps of
Lyapunov spectra which are indicated by similar rectangles s
rounding symbols in Fig. 4.
3-5
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functions of the Lyapunov index in quasi-one-dimensio
systems. We have plotted the normalized localization wid
W (n)/N for different system sizes for quasi-one-dimensio
systems whered50.5 ~density r50.523 . . . ). In order to
take the time average in Eq.~8! to calculate the localization
width, we sample the quantitiesg j

(n)(t)ln gj
(n)(t) just after col-

lisions for 1000N collisions and take the arithmetic averag
~In this paper we always calculate localization widths in t
way.! Figure 3~a! is the full scale graph of the localizatio
widths as functions of the normalized Lyapunov ind
n/(2N), and Fig. 3~b! shows a part of the localization width
corresponding to the small positive Lyapunov exponent
gion as functions of the Lyapunov indexn. @Note that we use
the normalized Lyapunov indexn/(2N) for thex axis in Fig.
3~a!, which is different from thex axis as the Lyapunov
index n itself in Fig. 3~b!.# The plot of the values of the
localization widthsW (n), j 52N11,2N12, . . . ,4N is omit-
ted because of the conjugate relation~14!. In the region of
large positive Lyapunov exponents the localization wid
W (n) is a monotonically increasing function of the Lyapun
indexn. This implies that localized behavior of the Lyapuno
vector is stronger in the large~in absolute value! Lyapunov
exponent region. The shape of the localization width in t
region is similar qualitatively to the shape given by the qu
tity CQ

(n) defined by Eq.~7! which was calculated in a squar
system@16#. Figure 3~a! also shows that the value of th
normalized Lyapunov localization widthsW (n)/N decreases
as a function of particle numberN in the region where
Lyapunov spectra change smoothly. Noting that the local
tion width has a lower bound (W (n)/N>1/N), this suggests
the existence of the thermodynamic limit for the spectrum
the localization widths.

Another important point in Fig. 3 is the connection wi
the stepwise structure of Lyapunov spectra. Figure 4 sh
the normalized Lyapunov spectra as a function of
Lyapunov indexn for different system sizes ford50.5.
These three system sizes correspond to those of Fig. 3 fo
localization width. In this figure the stepwise structures
Lyapunov spectra appear in the small Lyapunov expon
region. The values of the largest Lyapunov exponents
l (1)'1.28 forN525, l (1)'1.31 forN550, l (1)'1.31 for
N5100. The inset to Fig. 4 shows the full scale graph of
positive branch of the Lyapunov spectra normalized by
largest Lyapunov exponents as functions of the normali
Lyapunov indexn/(2N) ~note again that we use the differe
horizontal axes in the main graphs and the inset into Fig.!,
and show that the global shapes of these graphs are sim
and almost independent of the particle numberN except in
the small exponent region. Comparing Fig. 4 with Fig. 3~b!
for the localization widths in the same region of th
Lyapunov indexn, we notice that the localization width
W (n)/N normalized by the particle numberN corresponding
to the clear two-point steps of the Lyapunov spectra t
almost same value, which is almost independent of the
quence of the steps and the particle numberN @see the sym-
bols with a gray-filled background in Figs. 3~b! and 4 about
this point#. A similar thing can be seen for the four-poin
steps of the Lyapunov spectra.@See the symbols surrounde
by a rectangle of dashed lines in Figs. 3~b! and 4.# One may
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also notice that the region of the localization widths cor
sponding to the stepwise region of the Lyapunov spec
which is around the regionn/(2N).0.8 of the Lyapunov
index n in Fig. 3 approximately, can be distinguished fro
the other region. These points about the localization wid
that connect with the stepwise structure of the Lyapun
spectra are other merits of the use of the localization width
discuss the behavior of the Lyapunov vectors.

Before finishing this section, it is valuable to summari
some specific values of the localization widthW (n) which
have a clear physical meaning. The first value of the loc
ization width is W (n)5Wmax[N in which the amplitudes
udGj

(n)u of the Lyapunov vector components for each parti
take the same value. The Lyapunov localization close to
value actually occurs in one of the zero-Lyapunov expone
as shown inW (2N)/N in Fig. 3~a!. The second value is a
lower bound for the Lyapunov localization:W (n)>Wmin
[2. This is a little stronger condition than the inequali
W (n)>1 which we have already shown in the inequal
~10!. This value of the localization width is shown in Fig.
as the dotted line~the three lines ofW (n)/N52/N50.08 for
N525, 2/N50.04 for N550, and 2/N50.02 for N5100).
This lower bound for the localization width comes from th
fact that particle collisions occur betweentwo particles, and
is partly supported by the fact that the width of the amp
tudesg j

(n) of the normalized Lyapunov vector components
the j th particle corresponding to thenth Lyapunov exponent
l (n) is almost 2 in the low density limit and in larg
Lyapunov exponents, for example, as shown in Fig. 2~b!. It
should also be emphasized that there is a relation betw
the localized region of a Lyapunov vector and positions

FIG. 4. Lyapunov spectra normalized by the largest Lyapun
exponentl (1) as a function of the Lyapunov indexn for d50.5.
The circles, triangles, and squares correspond to the casesN
525,50, and 100, respectively. Symbols with a gray-filled ba
ground correspond to symbols with similar circles in Fig. 3~b!.
Symbols surrounded by a rectangle of dashed lines correspon
symbols surrounded by similar rectangles in Fig. 3~b!. Inset: The
full scale graph of the positive branch of the Lyapunov spectra
functions of the normalized Lyapunov indexn/(2N) for N525,50,
and 100. Notice that their global shapes are almost indistinguish
everywhere except in the small exponent region.
3-6
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LOCALIZED BEHAVIOR IN THE LYAPUNOV VECTORS . . . PHYSICAL REVIEW E 68, 046203 ~2003!
colliding particle pairs. To show this, in Fig. 5 we plot co
liding particle pairs as well as a contour plot of the amplitu
g j

(1) as a function of the collision numbernt and the particle
numberj for the quasi-one-dimensional system withN550
andd5105, which correspond to the three-dimensional p
of the Lyapunov localization given in Fig. 2~b!. It is clear
from this figure that particle collisions occur at the beginni
of the sharp rectangular shapes of the localization of
amplitudesg j

(n) . This suggests that the Lyapunov localiz
tion comes from the short range of particle-particle inter
tions. The minimum value of the localization width will als
be discussed in Secs. III B and V C in this paper. The th
value of the localization width is the value for the case
which the amplitudesg j

(n)(t), k51,2, . . . ,N are distributed
randomly with an equal probability~the solid line in Fig. 3!.
It is given by W (n)5Wran'0.651N approximately, and
gives an upper bound on the localization widths
Lyapunov indices corresponding to the continuous part of
Lyapunov spectrum@32#. The fourth value of the localization
width is the value obtained for a wavelike structure in t
Lyapunov vector. The dashed line in Fig. 3 is given as
localization width of g j

(n)(t)5ua j
(n)(t)sin@2pjn/N1b(t)#u2,

where the constanta j
(n)(t) is determined by the normaliza

tion condition forg j
(n)(t) andb(t) is randomly chosen from

a uniform distribution in@0,2p). Our numerical estimate fo
the localization widthW (n) in such a case isn independent
and is given approximately byW (n)5Wwav'0.736N. Fig-
ure 3~b! shows that some of the localization widths are
this range~the dash-dotted line!, and they correspond to th
transverse Lyapunov mode, namely, a wavelike structur
the Lyapunov vectors corresponding to the two-point step
the Lyapunov spectrum@5,25#.

FIG. 5. Localized regions~gray-filled and surrounded by soli
lines! of the Lyapunov vectordG(1) and the numbers of colliding
particle pairs~as pairs of black-filled circles! as functions of the
collision number nt and particle numberj in a quasi-one-
dimensional system ofN550 andd5105. The solid line is the
contour plot g j

(1)50.3 of the amplitudes of the normalize
Lyapunov vector componentsg j

(1) of the j th particle corresponding
to the largest Lyapunov exponentl (1), for the state shown in Fig
2~b!.
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III. DENSITY DEPENDENCE OF THE LYAPUNOV
LOCALIZATION

In this section we compare the Lyapunov localizati
widthsW (n) as a function of the Lyapunov index at differe
densities. We concentrate on the region where the Lyapu
spectra change smoothly as a function of the Lyapunov in
and show that there are two kinds of Lyapunov index dep
dence of the localization widths: exponential depende
@ED# and linear dependence@LD#. In the remaining sections
of this paper the number of particle isN550, and we change
the particle densityr by changing the parameterd connected
to r by Eq. ~2!.

A. Lyapunov localization at high density

Figure 6 shows the normalized Lyapunov localizati
widths as functions of the normalized Lyapunov ind
n/(2N) for a range of densities. In this figure the rando
component localization widthWran'0.65N and the mini-
mum localization widthWmin52 are indicated by the solid
line and the dashed line, respectively. We fitted the graph
exponential functionsy5ad1bdexp(gdx) with fitting pa-
rametersad , bd , andgd . Here we find the best values o
the fitting parameters to be (a20.05,b20.05,g20.05)
5(0.627 454,20.366 969,213.1761), (a0.3,b0.3,g0.3)
5(0.590 977,20.469 104,29.334 07) and (a1.5,b1.5,g1.5)
5(0.572 315,20.476 522,25.700 97). The localization
widths W (n) are nicely fitted by these exponential functio
in the regionn/(2N)<0.6 ~the exponential dependence r
gion @ED#).

Figure 6 also shows that the localization widths decre
as the parameterd increases~therefore as the densityr de-
creases!. The largest Lyapunov exponent is an increas

FIG. 6. Normalized localization widthsW (n)/N as functions of
the normalized Lyapunov indexn/(2N) in high density cases ofd
520.05~circles!, d50.3 ~triangles! andd51.5 ~squares!. The data
are fitted by exponential functions. The localization widthsW (n)

5Wran and Wmin are indicated by the solid line and the dash
line, respectively. The localization width indicated by the arro
corresponds to the localized behavior of the Lyapunov vec
shown in Fig. 2~a!.
3-7
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T. TANIGUCHI AND G. P. MORRISS PHYSICAL REVIEW E68, 046203 ~2003!
function of the particle density, as will be discussed in S
V, so this result means that the Lyapunov localization
stronger in a system with weaker chaos as characterized
smaller value of the largest Lyapunov exponent. It sho
also be noted that in this region the localization widths
smaller than the random localization widthWran'0.65N,
and larger thanWmin52. Figure 2~a! shows the behavior o
the Lyapunov localization corresponding to the localizat
width indicated by the arrow in Fig. 6. It is important to no
that the shape of the quantitiesg j

(n)(t) as a function of the
particle indexj have a tail like that in Fig. 2~a! in the region
showing an exponential dependence@ED# of the localization
widths.

B. Lyapunov localization at low density

Now we consider the Lyapunov localization in low de
sity cases, given by large values of the parameterd. Figure
7~a! shows the normalized localization widthsW (n)/N as
functions of the normalized Lyapunov indexn/(2N) for
various values ofd for the region where the Lyapunov spe
tra change smoothly. It is clear that the Lyapunov index
pendences of the localization widths in this figure are diff
ent from the high density cases shown in Fig. 6 in a num
of senses. First, linear dependences of the localization wi
with respect to the Lyapunov index appear in the region
small localization widths, which correspond to the larg
Lyapunov exponents. In Fig. 7~b!, fits of the Lyapunov index
dependences of the localization widths by linear functio
y5ãdx1b̃d are given with fitting parametersãd and b̃d :
(ã102,b̃102)5(0.503 874,0.046 405) in the case ofd5102,
(ã53102,b̃53102)5(0.347 437,0.044 468) in the case ofd

553102, and (ã105,b̃105)5(0.224 129,0.042 750 6) in th
case ofd5105. It is important to note that the localizatio
widths are always larger than 2, namely,W (n)/N.2/N
50.04 in this figure, and the smallest localization widt
corresponding to the largest Lyapunov exponents are clos
this minimum value in these low density cases. Besides,
graph of the linear dependence of the localization widths
flatter in the lower density case, as shown by the fact that
value of the fitting parameterãd decreases as the value of th
parameterd increases. The existence of the linear dep
dence@LD# of the localization widths is one of the mai
results of this paper.„In Fig. 7~a! the region of the linear
dependence@LD# in the low density limit is shaded gray.…

Second, in Fig. 7~a! we can still recognize a region of loca
ization widths in which the Lyapunov index dependence
the Lyapunov localization widths is exponential~the expo-
nential dependence@ED# region!. To show it clearly we give
a fit of an exponential functiony5a81b8exp(g8x) with val-
ues (a8,b8,g8)5(0.560 814,22.733 48,27.505 43) of the
fitting parameters in Fig. 7~a!. It should be emphasized tha
the shapes of the localization widths in the@ED# region are
almost independent of the particle densityr, at least in the
three density cases shown in Fig. 7~a!. As the third point, one
may notice that from the above characteristics of the loc
ization widths in the low density cases the region of t
linear dependence@LD# and the region of the exponentia
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dependence@ED# are more distinguishable in the lower de
sity case, with an accompanying sharp bending of the lo
ization width profile. Figure 7 suggests that the spectrum
the localization widths as a function of Lyapunov index ha
distinct shape in the low density limitr→0 with a critical
value zEL of the Lyapunov index where the localizatio

FIG. 7. Normalized localization widthsW (n)/N as functions of
the normalized Lyapunov indexn/(2N) in the low density cases
d5102 ~squares!, d553102 ~triangles!, andd5105 ~circles!. The
localization widthsW (n)5Wran and Wmin are indicated by the
solid line and the dashed line, respectively.~a! Localization widths
in the Lyapunov index regionn/(2N)<0.7. The data are fitted by
an exponential function. The gray region is the region in which
localization widths show a linear dependence@LD# as a function of
Lyapunov index in the low density limit.~b! Enlarged graphs in-
cluding the linear dependence region of the localization widths. T
data are fitted by linear functions. This figure also includes a par
the graph of the normalized localization widths for the cased
51.5 ~crosses!, which has already been shown in Fig. 6. The loc
ization widths indicated by the black arrow, the gray arrow, and
outline arrow correspond to localized behaviors of the Lyapun
vectors shown in Figs. 2~a!, 2~b!, and 8, respectively. The thick gra
horizontal line to connect the localization widths indicated by t
black arrow and the outline arrow in Fig.~b! is given to show that
these values take almost the same value.
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LOCALIZED BEHAVIOR IN THE LYAPUNOV VECTORS . . . PHYSICAL REVIEW E 68, 046203 ~2003!
width W (n) shows a linear dependence@LD# in the
Lyapunov indexn<zEL and shows an exponential depe
dence@ED# in the Lyapunov indexn.zEL .

It is important to note that the exponential depende
@ED# and the linear dependence@LD# of the localization
widths can also be distinguished by the shapes of the am
tudesg j

(n)(t) of the normalized Lyapunov vector componen
of each particle. To discuss this point we note that Fig. 2~a! is
the localized behavior of the Lyapunov vector correspond
to the Lyapunov width indicated by the black arrow in Fig
6 and 7~b! and is in the region of exponential dependen
@ED# of localization widths. This localization shows a lon
tail behavior. On the other hand, Fig. 2~b! is the Lyapunov
localization corresponding to the localization width indicat
by the gray arrow in Fig. 7~b! and is in the region of linea
dependence@LD# of localization widths. This localization
shows a sharp rectangular shape~with width 2). These ob-
servations lead to the conjecture that in the exponential
pendence@ED# the amplitudesg j

(n)(t) have a long tail, and
in the linear dependence@LD# the amplitudesg j

(n)(t) have a
rather sharp rectangular shape. To make this point conv
ing, we compare the behaviors of the amplitudesg j

(n)(t) cor-
responding to two localization widths, which take almost t
same value of the localization widths but show different d
pendences@LD# and @ED# of the localization widths. For
this purpose we choose the 15th localization widthW (15) for
d553102. This localization width, indicated by the outline
arrow in Fig. 2~b!, is in the region of the linear dependen
@LD# and takes almost the same value as the localiza
width W (1) indicated by the black arrow in Figs. 6 and 7~b!
in the cased51.5, which is in the region of exponentia
dependence@ED# of the localization widths, and whose lo
calized behavior is shown in Fig. 2~a!. Figure 8 shows the
localized behavior of the amplitudesg j

(15)(t) as a function of
the collision numbernt and the particle indexj for d55
3102. Here, the data in Fig. 8 are taken after every sec
collision. This figure shows that some peaks of the am
tudesg j

(n)(t) have flat tops with a width 2 and distinct rec
angular shapes, although its corresponding Lyapunov ex
nent, the 15th Lyapunov exponent, is far from the largest
and is less localized than in Fig. 2.

FIG. 8. Localized behaviors of the amplitudesg j
(15) of the nor-

malized Lyapunov vector components of each particle as a func
of the collision numbernt and the particle indexj for d553102.
The corresponding localization width is indicated by the outl
arrow in Fig. 7~b!.
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It should be noted that the linear dependence@LD# of the
localization widths as a function of the Lyapunov index
not a property of the quasi-one-dimensional systems only
Appendix B we consider the localization widths in a squa
system, and show that the linear dependence@LD# of the
Lyapunov localization also appears in the square system

IV. LYAPUNOV SPECTRA AND THE ANGLES
AND AMPLITUDES OF LYAPUNOV

VECTOR COMPONENTS

In this section, we consider how differences between
linear @LD# and exponential dependences@ED# of the local-
ization widths affect other quantities, such as the Lyapun
spectrum, the angle between the spatial and momentum p
of the Lyapunov vectors, and the amplitudes of thex andy
components of the spatial part and the momentum part of
Lyapunov vectors. We also investigate the effects of the s
wise structure of the Lyapunov spectra on these quantitie

A. Lyapunov spectra

Figure 9 shows the normalized Lyapunov spectra for
systems as functions of the normalized Lyapunov index fo
range of values ofd. Here the values of the largest Lyapuno
exponents are given byl (1)'4.79 for d52531022, l (1)

n

FIG. 9. Lyapunov spectra normalized by the largest Lyapun
exponentsl (1) as functions of the normalized Lyapunov inde
n/(2N) for d52531022 ~open circles!, d50.3 ~open triangles!,
d51.5 ~open squares!, d5102 ~closed squares!, d553102 ~closed
triangles!, andd5105 ~closed circles!. The gray region is the region
in which the localization widths show a linear dependence@LD# as
a function of the Lyapunov index at low densities. The small figu
in the upper right side shows the enlarged graphs of the small p
tive region of the Lyapunov spectra for the low density cases od
5102, 53102, and 105.
3-9
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T. TANIGUCHI AND G. P. MORRISS PHYSICAL REVIEW E68, 046203 ~2003!
'1.64 ford50.3, l (1)'0.769 ford51.5, l (1)'0.0579 for
d5102, l (1)'0.0161 for d553102, and l (1)'0.000 157
for d5105. The negative branch of the Lyapunov spectra
omitted in this figure because of the conjugate property~12!
of the Lyapunov exponents. The Lyapunov index dep
dences of the localization widths in these cases were sh
in Figs. 6 and 7. It should be emphasized that in the l
density cases, in which the linear dependence@LD# appears,
we can recognize a sharp bend in the Lyapunov spe
around the normalized Lyapunov indexn5zEL . Such a
bending point corresponds to the point that distinguishes
dependences@LD# and @ED# of the localization widths in
Fig. 7. ~In this figure the region of the linear dependen
@LD# of localization widths at low densities has a gray bac
ground.! It may be noted that such a bending of t
Lyapunov spectrum has also been reported in a fully tw
dimensional system@33# ~also see the Lyapunov spectra f
the Fermi-Pasta-Ulam models in Refs.@34,35#!.

In Fig. 9 we can see some stepwise structures of
Lyapunov spectra, not only in the high density casesd5
2531022, d50.3 and 1.5, but also in the low density cas
d5102, d553102 andd5105. ~See the enlarged graphs
the upper right side of Fig. 9 for the stepwise structure of
Lyapunov spectra in these low density cases.! The steps of
the Lyapunov spectra consist of two-point steps and fo
point steps, which were considered in Ref.@25# in detail.
Different from the high density cases, at low density t
separations of the two-point steps and the four-point step
the Lyapunov spectra are not so clear.

B. Angle between the spatial and the momentum parts
of the Lyapunov vectors

As a second example to illustrate the effects of the t
dependences@LD# and@ED# of localization widths, we con-
sider the angle u (n) between the spatial partdq(n)

5(dq1
(n) ,dq2

(n) , . . . ,dqN
(n))T and the momentum partdp(n)

5(dp1
(n) ,dp2

(n) , . . . ,dpN
(n))T of the Lyapunov vectordG(n)

corresponding to thenth Lyapunov exponentl (n), which is
defined by

u (n)[cos21S dq(n)
•dp(n)

udq(n)uudp(n)u
D . ~15!

Noting the conjugate relations

dq(4N2n11)
•dp(4N2n11)

udq(4N2n11)uudp(4N2n11)u
52

dq(n)
•dp(n)

udq(n)uudp(n)u
~16!

following from the conjugate property~11! of the Lyapunov
vectors, the angleu (n) satisfies the condition

u (4N2n11)5p2u (n). ~17!

This angle has already been investigated in many-par
systems@7,25#. It should be noted that some analytical a
proaches give a formula to calculate Lyapunov expone
from the spatial part only~or the momentum part only! of the
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tangent vector@8,36,37#, so it is important to investigate th
relation between the spatial part and the momentum par
the Lyapunov vector.

In Fig. 10 we show the graphs of the time avera
^u (n)&/p as a function of the normalized Lyapunov inde
n/(2N) for a range of values ofd. Here the time average o
the angleu (n) is the arithmetic average of their values imm
diately after collision, for 1000N collisions. The plots of the
time-averaged angles^u (n)&, n52N11,2N12, . . . ,4N, cor-
responding to the negative branch of the Lyapunov ex
nents are omitted because of the conjugate property~17! of
the angleu (n). It is noted that in our numerical calculation
the amplitudesudp(n)u, n52N22, 2N21, and 2N corre-
sponding to zero-Lyapunov exponents are zero~or extremely
small!, so the anglesu (n), n52N22, 2N21, and 2N can-
not be defined. This is the reason why we do not plot th
angles in Fig. 10~see Sec. IV C about this point!. This figure
shows that in the low density cases, in which the linear
pendence@LD# of the localization widths appears, the spe
tra of the averaged anglêu (n)& bend around the value
n/(2N)5zEL /(2N) of the normalized Lyapunov index.~In
Fig. 10 we showed a region of the linear dependence@LD#
of the localization widths as a gray region.! In the region of

FIG. 10. The time averagêu (n)&/p of the angle divided byp
for the spatial partdq(n) and the momentum partdp(n) of the
Lyapunov vector corresponding to thenth Lyapunov exponentl (n)

as functions of the normalized Lyapunov indexn/(2N) for d5
2531022 ~open circles!, d50.3 ~open triangles!, d51.5 ~open
squares!, d5102 ~closed squares!, d553102 ~closed triangles!,
andd5105 ~closed circles!. The gray region is the region in which
the localization widths show a linear dependence@LD# as a func-
tion of the Lyapunov index in low density cases. The solid li
corresponds to the valueu (n)5p/2 of the angle. The small figure in
the upper right side shows the enlarged graphs for the low den
casesd5102, 53102, and 105 in the region of large Lyapunov
indices.
3-10
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LOCALIZED BEHAVIOR IN THE LYAPUNOV VECTORS . . . PHYSICAL REVIEW E 68, 046203 ~2003!
the linear dependence@LD# of the localization widths the
time-averaged angleŝu (n)& increase monotonically as func
tions of Lyapunov indicesn, while the time-averaged angle
^u (n)& corresponding to the exponential dependence@ED# of
the localization widths are close top/2, meaning that in this
region the vectordq(n) is almost orthogonal to the vecto
dp(n) ~see the case ofd5105 in Fig. 10!.

We can also see the effect of the stepwise structure of
Lyapunov spectra in the angleu (n). As shown in Fig. 10 the
values of the time-averaged angles^u (n)& corresponding to
the two-point steps of the Lyapunov spectra in Fig. 9
rather smaller than the values corresponding to their fo
point steps, at all densities shown in Fig. 10~see the upper
right side of Fig. 10 for the low density cases!. Therefore the
Lyapunov index dependence of the time-averaged an
^u (n)& can be used to distinguish the two-point step of
Lyapunov spectra from the other parts.

C. Amplitudes of the x and y components
of the Lyapunov vectors

As shown in Sec. IV A, in low density cases the positi
branch of Lyapunov spectra is separated into three parts~i!
A region in which the Lyapunov spectrum is a rapidly d
creasing function of the Lyapunov index and correspond
the linear dependence@LD# of the localization widths;~ii ! a
region in which the values of the Lyapunov exponents
very small compared to the largest Lyapunov exponent
correspond to the exponential dependence@ED# of the local-
ization widths, and~iii ! a region showing the stepwise stru
ture of the Lyapunov spectra. The boundaries of regions~i!
and~ii ! of the Lyapunov spectra appear as a sharp bendin
the Lyapunov spectra in the low density limit. To understa
this characteristic of the Lyapunov spectra we note tha
positive Lyapunov exponent is connected to a decorrela
rate in chaotic dynamics, and a larger positive Lyapun
exponent means that a trajectory diverges more rapidly
the energy surface in ergodic systems and loses correla
with its initial value more quickly. This is partly supporte
by the fact that the Kolmogorov-Sinai entropy, which
equal to the sum of all the positive Lyapunov expone
~Pesin’s identity! in closed systems, is connected to the
verse relaxation time in ergodic systems@1#. A relation be-
tween a Lyapunov exponent and a decay rate of time co
lation is also discussed in Refs.@38,39#. Another example of
a relation between a time scale of the dynamics and a p
tive Lyapunov exponent is the tracer particle effect
Lyapunov spectra@40#. On this subject, a many-particle sy
tem consisting of a small light particle, called the tracer p
ticle, moving at high speed~the short time scale! and many
big heavy particles moving at low speeds~the long time
scale! is considered. It is shown that the existence of
tracer particle leads to relatively large Lyapunov expone
compared with the Lyapunov exponents corresponding to
other heavy particles. At low density the quasi-on
dimensional systems exhibit a bending of the Lyapun
spectra, which separates the set of positive Lyapunov ex
nents into two groups~i! and ~ii ! of relatively different val-
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ues, and this suggests the existence of a time-scale separ
in the dynamics of these systems.

One might think that in the quasi-one-dimensional s
tems such a time-scale separation may come from the
narrow rectangular shape of the system. In the quasi-o
dimensional system, especially in the larged case with a low
density, the time-scale of oscillation of each particle in thx
direction is much larger than the time scale of that in they
direction, and it may be one possibility leading to the tim
scale separation mentioned above.~However this possibility
may be rather unlikely, because as shown in Appendix
bending point of the Lyapunov spectra does not change
nificantly on changing the system from quasi-on
dimensional to square with the same areaLxLy and the same
number of particlesN.! Another possibility to explain this
bending of the Lyapunov spectrum may be from the differ
roles of the spatial and momentum parts of the Lyapun
vectors at low density. The result in Sec. IV B supports t
point, showing that the spatial and momentum parts of
Lyapunov vectors are not in the same direction at low d
sity.

Motivated by the above considerations, in this section
consider the amplitudes of the four parts of the Lyapun
vectors: thex and y components in the spatial part and th
momentum part of the Lyapunov vectors, namely, the fo
kinds of quantities defined by

hq j
(n)~ t ![

(
k51

N

udqjk
(n)~ t !u2

(
k51

N

udGk
(n)~ t !u2

, ~18!

hp j
(n)~ t ![

(
k51

N

udpjk
(n)~ t !u2

(
k51

N

udGk
(n)~ t !u2

, ~19!

j 5x and y, in each Lyapunov indexn. Here dqjk
(n)(t) and

dpjk
(n)(t) are thej components of the spatial coordinate pa

dqk
(n)5„dqxk

(n)(t),dqyk
(n)(t)… and the momentum partdpk

(n)

5„dpxk
(n)(t),dpyk

(n)(t)… of the Lyapunov vector dGk
(n)

5(dqk
(n) ,dpk

(n)) corresponding to thekth particle and thenth
Lyapunov exponent at timet, respectively. These four quan
tities are normalized as

hpx
(n)~ t !1hpy

(n)~ t !1hqx
(n)~ t !1hqy

(n)~ t !51 ~20!

by their definitions. Using the conjugate property~11! of the
Lyapunov vector we obtain

hp j
(4N2n11)~ t !5hq j

(n)~ t !, ~21!

hq j
(4N2n11)~ t !5hp j

(n)~ t !. ~22!

Therefore we can omit the quantitieshp j
(4N2n11)(t) and

hq j
(4N2n11)(t), for n51,2, . . . ,2N corresponding to the

negative branch of the Lyapunov spectra.
3-11
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FIG. 11. The time averages of the normalized amplitudes of thex component of the spatial part@^hqx
(n)(t)&, circles#, they component of

the spatial coordinate part@^hqy
(n)(t)&, triangles#, the x component of the momentum part@^hpx

(n)(t)&, pulses#, and itsy component of the
momentum part@^hpy

(n)(t)&, crosses# of the Lyapunov vectors as functions of the normalized Lyapunov indexn/(2N) for d52531022

@graph~a!#, d50.1 @graph~b!#, d51 @graph~c!#, andd5105 @graph~d!#. The small panels in the top right of~a!, ~b!, ~c!. and~d! are enlarged
graphs of̂ hpx

(n)(t)& and^hpy
(n)(t)& in the small positive Lyapunov exponent regions. The gray region in graph~d! is the region in which the

localization widths show a linear dependence@LD# as a function of the Lyapunov index.
a

r-

n

III,
ow
1

ay

m-
Figure 11 contains the graphs of the time-averaged qu
tities defined by Eqs.~18! and ~19! as functions of the nor-
malized Lyapunov indexn/(2N) for a range of values ofd.
Here the time averagêX& of the quantitiesX5 hqx

(n)(t),
hqy

(n)(t) hpx
(n)(t) andhpy

(n)(t) are taken as the arithmetic ave
age of the quantityX immediately after collisions, for 1000N
collisions. The cases ofd52531022 andd5105 shown in
Figs. 11~a! and 11~d! are the cases of the highest density a
04620
n-

d

the lowest density, respectively, considered in Secs.
IV A, and IV B, and the other two cases are given to sh
intermediate situations between the two cases of Figs. 1~a!
and 11~d!. It is noted that Figs. 11~a!–11~c! are for the case
of a particle density in which the linear dependences@LD#
of localization widths do not appear yet, and only in the gr
region of Figs. 11~d! does the linear dependence@LD# ap-
pear. From this figure it is clear that there is a strong asy
3-12
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LOCALIZED BEHAVIOR IN THE LYAPUNOV VECTORS . . . PHYSICAL REVIEW E 68, 046203 ~2003!
metry between the spatial and momentum parts of
Lyapunov vectors in any density region, as well as an as
metry between thex and y components of the Lyapuno
vectors especially at low density.

The behavior of the graphs in Fig. 11 are different in t
region where the Lyapunov spectra change smoothly an
the stepwise region of the Lyapunov spectra. First we disc
the region where the Lyapunov spectra change smoo
which is the region of the Lyapunov indexesn/(2N),0.8
approximately in Fig. 11. In the high density case shown
Fig. 11~a! the momentum parts (^hpx

(n)(t)& and ^hpy
(n)(t)&) of

the Lyapunov vectors are larger than the corresponding
tial parts (̂ hqx

(n)(t)& and^hqy
(n)(t)&). As the density decrease

the spatial parts of the Lyapunov vectors increase~and mo-
mentum parts decrease!, first in thesmall positive Lyapunov
exponent region@see changes from Fig. 11~a! to Fig. 11~b!#,
and then in thelarge Lyapunov exponent region@see changes
from Fig. 11~b! to Fig. 11~d! via Fig. 11~c!#. At very low
density, as shown in Fig. 11~d!, the spatial parts of the
Lyapunov vectors are much larger than the correspond
momentum parts for Lyapunov vectors of any index, an
linear dependence@LD# of the localization widths appears
In this density region a significant gap in thex and y com-
ponents of the spatial part of the Lyapunov vectors appe
and the transverse part@^hqy

(n)(t)&# is larger than the longitu-
dinal part^hqx

(n)(t)& in the large positive Lyapunov expone
region while the reverse is true in the small positi
Lyapunov exponent region. In the low density limit the m
mentum partŝhpx

(n)(t)& and^hpy
(n)(t)& are extremely small so

the spatial partŝhqx
(n)(t)& and^hqy

(n)(t)& are almost symmet
ric in the line y50.5 as required by the normalization co
dition ~20!. It should be emphasized that in the Lyapun
index of the linear dependence@LD# of the localization
widths the quantitieŝhqy

(n)(t)& and ^hqx
(n)(t)& are rather flat,

shown in the gray region in Fig. 11~d!. We can show that
these asymmetries between thex and y components of the
Lyapunov vectors actually come from its narrow rectangu
shape, because as shown in Appendix B such asymme
do not appear in the square system, although the asym
tries between the spatial and momentum parts of
Lyapunov vectors still exist there.

As a second point, Fig. 11 also shows some characteri
of the time-averaged amplitudes of the Lyapunov vec
components corresponding to the stepwise region of
Lyapunov spectra. In Fig. 11 we can see flat parts consis
of two-points~four-points! for the time-averaged normalize
amplitudes^hqx

(n)(t)&, ^hqy
(n)(t)&, ^hpx

(n)(t)& and ^hpy
(n)(t)& of

the Lyapunov vectors, which correspond to the two-po
steps ~the four-point steps! of the Lyapunov spectra~see
Figs. 11~a!–11~d! in the region of the Lyapunov inde
aroundn/(2N).0.9, as well as the small panels in the t
right of these figures for enlarged momentum parts^hpx

(n)(t)&
and ^hpy

(n)(t)& in the small positive Lyapunov exponent r
gions!. Values of the two-point steps of the transverse p
^hqy

(n)(t)& and^hpy
(n)(t)& of the Lyapunov vectors correspond

ing to the two-point steps of the Lyapunov spectra are lar
than their longitudinal partŝhqx

(n)(t)& and ^hpx
(n)(t)& in Figs.

11~a!–11~d!. On the other hand, values of the four-poi
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steps of the longitudinal part^hqx
(n)(t)& and ^hpx

(n)(t)& of the
Lyapunov vectors corresponding to the four-point steps
the Lyapunov spectra are larger than their transverse p
^hqy

(n)(t)& and ^hpy
(n)(t)& in Figs. 11~a!–11~c!, and the spatial

parts of the Lyapunov vectors in Figs. 11~d!. At any density
the spatial partŝhqx

(n)(t)& and ^hqy
(n)(t)& are usually larger

than the momentum partŝhpx
(n)(t)& and ^hpy

(n)(t)&, respec-
tively, in the region of Lyapunov indices indicating the ste
wise structure of the Lyapunov spectra. It should be emp
sized that wavelike structure~the transverse Lyapuno
modes! in the y components of the spatial part and the m
mentum part of the Lyapunov vectors appears in the tw
point steps of the Lyapunov spectra reported by Refs.@5,25#,
and Fig. 11 suggests that we may get a rather clearer w
like structure in the spatial part of the Lyapunov vectors th
in its momentum part. We can conclude a similar result
the four-point steps of the Lyapunov spectra in which tim
dependent wavelike structure in they components of the spa
tial part of the Lyapunov vectors and inx components of the
spatial part of the Lyapunov vectors@16,25# is observed. It
may be noted that the time-averaged amplitudes^hpx

(n)(t)&
and^hpy

(n)(t)&, n52N22, 2N21, and 2N corresponding to
zero Lyapunov exponents are almost zero at any density~see
the small panels in the top right of Figs. 11~a!–11~d!!.

V. DENSITY DEPENDENCE OF THE LARGEST
LYAPUNOV EXPONENT AND RELATED QUANTITIES

As we have already shown in Sec. III, the linear depe
dence @LD# of localization widths as a function of th
Lyapunov index appears at low density, but it was not cl
at what density the linear dependence@LD# of the Lyapunov
localization first appears as the particle densityr deceases
from 1. In this section we discuss this problem by calculat
the density dependences of the largest Lyapunov expon
the angle and amplitudes of Lyapunov vector compone
and the localization width, which correspond to the larg
Lyapunov exponent. Especially, we show that the parti
density region in which the linear dependence@LD# appears
is almost the same as the density region in which the larg
Lyapunov exponent begins to satisfy the Krylov relation.

A. Largest Lyapunov exponent

Figure 12 shows the largest Lyapunov exponentl (1) as a
function of the densityr in the quasi-one-dimensional sys
tem. In this figure we show the numerical error at each d
point as an error bar. Clearly the value of the larg
Lyapunov exponent at very low densities is less accur
than that at higher densities. The gray region in this figure
the density region in which the linear dependence@LD# of
the localization widths appears.

It is known that in the low density limit the larges
Lyapunov exponentl (1) should have the form

l (1);ar ln~br! ~23!

with parametersa andb. Equation~23! is called the Krylov
relation@41# and has already been demonstrated numeric
in a fully two-dimensional~three-dimensional! system con-
3-13
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sisting of many-hard-disks~many-hard-spheres! @31,42#,
apart from a factor. In Fig. 12 we fitted the numerical data
the Krylov relation ~23! with parameter valuesa5
21.668 75 andb51.282 52~the solid line!, which gives a
good fit for the density dependence of the largest Lyapu
exponent. It is important to note that the density reg
where the largest Lyapunov exponent satisfies the Kry
relation almost exactly coincides with the density region
which the linear dependence@LD# of the localization widths
appears. To test the Krylov relation~23!, we also tried to fit
the numerical data by a power lawy5a8rb8 ~dashed line!
with fitting parametersa8 and b8 in Fig. 12. We used the
parameter valuesa852.551 26 andb850.808 158, and it is
shown in Fig. 12 that the Krylov relation~23! gives a better
fit than this power law in the gray region.

Now we check the values of the fitting parametersa and
b used to fit the graph of Fig. 12 by following the roug
derivation of the Krylov relation in Ref.@1#. ~Note that more
exact derivations are known for some specific systems, s
as the Lorentz gas, etc. See, for example, Refs.@43,44#.! First
we note that afternt particle collisions the amplitude of
Lyapunov vector is stretched by a factor (l f /R)nt approxi-
mately with l f the mean free path. Introducing the collisio
raten[nt /t to connect the mean free pathl f with the timet
we estimate the largest Lyapunov exponent as

l (1); lim
t→1`

1

t
lnS l f

RD nt

5n ln
l f

R
. ~24!

We approximate the collision raten by a thermal velocity
uth[A(2/M )(K/N) asn;uth / l f because ofutht;ntl f , and
assume that the mean free pathl f is inversely proportional to
the densityr, so we obtain

FIG. 12. Largest Lyapunov exponentl (1) as a function of par-
ticle densityr. The gray region is the density region in which th
linear dependence@LD# of the localization widths as a function o
the Lyapunov index appears. Numerical data are fitted by the K
lov relation l (1);ar ln(br) ~solid line! and the power functiony

5a8rb8 ~dashed line! with fitting parametersa, b, a8, and b8.
The error bar in each data point is given by the absolute va
2ul (1)1l (4N)u or twice of the sum of the largest and the smalle
Lyapunov exponent.
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l (1);2uthgr ln~Rgr!, ~25!

using a constantg of l f;(gr)21. Comparing Eq.~25! with
Eq. ~23! we obtain the relation

a

b
;2

uth

R
, ~26!

which is independent of the value of the constantg. Using
the parameter valuesuth5A2 and R51 in our numerical
calculations, we obtaina/b;2A2521.4142 . . . , which is
consistent with the values of the fitting parametersa andb
in Fig. 12:a/b521.3011 . . . .

Next we proceed to estimate the factorg5( l fr)21 from
Fig. 13, the graph of the mean free time as a function of
density. Noting the relationl f;utht th , in this figure we fit-
ted the numerical data by the functiony51/(uthgx) obtain-
ing the valueg513.341 for the fitting parameterg. ~We
emphasized that this function gives a nice fit in the dens
region in which the linear dependence@LD# of the
Lyapunov localization appears.! However this valueg
513.341, which isb in Eq. ~23! in the case ofR51, is
about ten times as large as the fitting value ofb used to fit
the graph of Fig. 12. It may be noted that in order to der
expression~25! for the largest Lyapunov exponent we n
glected some characteristics of the quasi-one-dimensi
systems, such as the fact that in the quasi-one-dimensi
system with a large value of the parameterd particles collide
mainly head on and it is rather rare for particles to ha
grazing collisions with other particles. We should take the
points into account to get a more precise expressions for
parametersa andb in Eq. ~23! than in Eq.~25!.

B. Angle and amplitudes of Lyapunov vector components

As the next example we consider the angleu (1) defined by
Eq. ~15! between the spatial and momentum parts of
Lyapunov vector corresponding to the largest Lyapunov

-

e
t

FIG. 13. Mean free timet f as a function of densityr. The
dotted line is a plot of the fitting functiony51/(uthgx) with the
thermal velocityuth and the fitting parameterg. The gray region is
the density region in which the linear dependence@LD# of the
localization widths as a function of the Lyapunov index appears
3-14
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LOCALIZED BEHAVIOR IN THE LYAPUNOV VECTORS . . . PHYSICAL REVIEW E 68, 046203 ~2003!
ponent. Figure 14 is the graph of the time average of
angleu (1)/p as a function of particle densityr. The graph
has a local maximum point at aboutr'0.2, which is close to
the value of particle density in which the linear depende
@LD# of the localization widths starts to appear as the d
sity decreases from 1. As we have already discussed in S
II and III, the existence of the linear dependence@LD# of the
localization widths can be checked by the linear depende
of the localization widths on the Lyapunov index and t
rectangular shape of the amplitude of the Lyapunov vec
but it is rather hard to use this criterion to distinguish t
density region of the linear dependence@LD#, because it is
not easy to recognize these behaviors in an intermediate
gion between the density region of the exponential dep
dence@ED# only and the density region of both the depe
dences@ED# and@LD#. In this sense the graph of the ang
u (1) as a function of particle densityr may give a more
distinct criterion to distinguish the density region in whic
the linear dependence@LD# appears. It is noted that th
angleu (1) does not seem to go to zero in the low dens
limit as shown in the inset to Fig. 14.

Next in Fig. 15, we consider the density dependence
the time average of normalized amplitude of thex compo-
nent and they component of the spatial part and the mome
tum part of the Lyapunov vector corresponding to the larg
Lyapunov exponent, which are defined by Eqs.~18! and~19!
in n51. This may not be a good criterion to distinguish t
density region of the linear dependence@LD#, but it is clear
that in the density region of the linear dependence@LD# the
spatial parts of the Lyapunov vector are dominant and a
appears between itsx component̂ hqx

(1)(t)& and they compo-
nent^hqy

(1)(t)&. On the other hand, in the high density regi
in which the linear dependence@LD# does not appear, th
momentum partŝ hpx

(1)(t)& and ^hpy
(1)(t)& of the Lyapunov

vector are dominant. It should be noted that at the low d
sity in which the linear dependence@LD# appears, the trans

FIG. 14. The density dependence of the time-average^u (1)&/p,
the angle between the spatial and momentum part of the Lyapu
vector of the largest Lyapunov exponent as a function of the par
densityr. The gray region is the density region in which the line
dependence@LD# of the localization widths as a function of th
Lyapunov index appears. The inset: The same graph but inclu
the angleu (1) at lower density.
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verse componentŝhqy
(1)(t)& and ^hpy

(1)(t)& are always larger
than the longitudinal componentŝhqx

(1)(t)& and ^hpx
(1)(t)&,

respectively.

C. Localization width

As the last quantity in this section, we consider the de
sity dependence of the Lyapunov localization width cor
sponding to the largest Lyapunov exponent. Figure 16 is
graph of the Lyapunov localization widthW (1)/N normal-
ized by the particle numberN as a function of densityr.
This figure shows that in the low density limit the norma
ized localization widthW (1)/N goes to the value 2/N
(50.04) ~solid line in Fig. 16!, which is discussed as th
minimum localization widthWmin /N in Sec. II. But it is not
so clear from this figure how to distinguish the density
gion in which the linear dependence@LD# of the localization
widths appears.

VI. CONCLUSION AND REMARKS

In this paper we have discussed localized behaviors
Lyapunov vectors~the Lyapunov localization! for quasi-one-
dimensional systems consisting of many hard disks~with
periodic boundary conditions except in Appendix B 5!. The
quasi-one-dimensional system was introduced as a par
system whose shape is a very narrow rectangle that does
allow the interchange of particle positions. We compar
some methods to characterize the localized behavior of
Lyapunov vectors, and one such method used in this pa
defines a quantity called the localization width, whose log

ov
le

g
FIG. 15. The time averages of the normalized amplitudes of

x component of the spatial part@^hqx
(1)(t)&, circles#, they component

of the spatial part@^hqy
(1)(t)&, triangles#, the x component of the

momentum part@^hpx
(1)(t)&, pluses!, and they component of the

momentum part@^hpy
(1)(t)&, crosses# of the Lyapunov vector of the

largest Lyapunov exponent as functions of the particle densityr.
The gray region is the density region in which the linear dep
dence @LD# of the localization widths as a function of th
Lyapunov index appears.
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T. TANIGUCHI AND G. P. MORRISS PHYSICAL REVIEW E68, 046203 ~2003!
rithm is given by an entropy for the amplitude distribution
the Lyapunov vector components of each particle. The lo
ization width indicates the number of particles contributi
to the localized part of the Lyapunov vector. It could not on
be used as an indicator to measure the magnitude of
localized behavior of the Lyapunov vectors, but also it can
used to distinguish different delocalized properties of
Lyapunov vectors such as the delocalization associated
a random distribution of particle component amplitudes
delocalization associated with a uniform distribution, and
delocalization associated with a wavelike structure~corre-
sponding to stepwise structure of the Lyapunov spec!
~Figs. 3 and 4!. The localized region of the Lyapunov vecto
is related to the positions of colliding particles~Fig. 5!, and
this leads to the lower bound 2 for the localization wid
~Figs. 7 and 16!. Using the localization width we showe
that there are two kinds of the Lyapunov localizations
many-hard-disk systems. The first type of the Lyapunov
calization is that characterized by an exponential depende
@ED# of the localization width as a function of the Lyapuno
index ~Fig. 6!, and by its long tail of localized Lyapuno
vectors@Fig. 2~a!#. This type of the Lyapunov localization i
observed at any particle density. The second type of
Lyapunov localization is characterized by the linear dep
dence@LD# of the localization widths as a function of th
Lyapunov index~Fig. 7!, and by the sharp rectangular sha
of the localized Lyapunov vectors@Figs. 2~b! and 8#. This
type of Lyapunov localization appears only in low dens
cases and in Lyapunov indices corresponding to the la
Lyapunov exponents~in absolute value!. We showed that in
the density region of the linear dependence@LD# of the lo-
calization widths the Lyapunov spectra are bent and se
rated into two parts~except for the stepwise region of th
Lyapunov spectra!: one corresponding to the exponential d
pendence@ED# and taking very small values correspondi
to the largest Lyapunov exponent, and the other correspo

FIG. 16. The normalized localization widthW (1)/N for the larg-
est Lyapunov exponent as a function of densityr. The solid line is
the minimum value of the normalized localization width:Wmin /N
50.04. The gray region is the density region in which the line
dependence@LD# of the localization widths as a function of th
Lyapunov index appears.
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ing to the linear dependence@LD# and showing a rapid de
creasing dependence of the Lyapunov index~Fig. 9!. It was
also shown that differences between the exponential de
dence@ED# and the linear dependence@LD# appear in the
angleu (n) between the spatial and momentum parts of
Lyapunov vectors~Fig. 10! and in the amplitudes of thex
andy components of the spatial part@Fig. 11~d!#. ~Here we
took they direction as the narrow direction of the rectang
and thex-direction as the longer orthogonal direction.! The
density region, in which the linear dependence@LD# of lo-
calization widths appear, almost exactly coincides with
region in which the density dependence of the larg
Lyapunov exponentl (1) satisfies the Krylov relation~Fig.
12!. We also indicated that at the boundary of the dens
region of the exponential dependence@ED# only and the
density region of both the linear dependence@LD# and the
exponential dependence@ED#, the angleu (1) corresponding
to the largest Lyapunov exponent shows a local maximum
a function of particle density~Fig. 14!.

In this paper we observed differences in the amplitudes
the x and y components of the Lyapunov vectors~Figs. 11
and 15!. These differences come from the difference in t
roles of the directions in the quasi-one-dimensional syste
We also observed differences in the amplitudes of the spa
and momentum parts of the Lyapunov vectors. In the reg
where the Lyapunov spectra are changing smoothly the
plitude of the spatial part of the Lyapunov vectors is larg
~smaller! than that of the momentum part in low~high! den-
sity cases~Figs. 11, 15, and 20!. The spatial and momentum
parts of the Lyapunov vectors are in almost the same di
tion at high density, whereas they are rather close to ortho
nal in the low density case, especially in the region of t
exponential dependence@ED# of the localization widths as a
function of Lyapunov index~Figs. 10 and 19!. These behav-
iors are found not only in the quasi-one-dimensional syste
but also in the square system~Fig. 20!. Concerning the step
wise region of the Lyapunov spectra, as shown in Fig. 11,
amplitudes of they component~transverse component! of the
spatial and momentum parts of the Lyapunov vectors
larger than the correspondingx components~their longitudi-
nal components! in the two-point steps of the Lyapuno
spectra, whereas they are opposite in four-point steps of
Lyapunov spectra@except in very low density cases as in Fi
11~d!#.

Microscopic chaos plays an essential role in the statist
treatments of deterministic dynamical systems, but it has a
been noted that chaos is not a necessary condition for s
particular statistical behaviors@45,46#. For instance, ergodic
ity does not require the system to be chaotic, and numer
work suggests that even some nonchaotic systems may
hibit the mixing property and thus guarantee the decay
correlations@47#. It has also been observed that nonchao
systems can show diffusive behavior@48–52#, Fourier’s law
of heat conduction@52#, and satisfy the fluctuation theorem
@53#, which have all been regarded as important statist
properties of dynamical systems. As another example, ma
particle effects are still of special interest in the statisti
properties of dynamical systems, where it is observed
many particles are not necessary for systems to be cha

r
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and even one-particle systems such as the Lorentz gas m
and the billiard model@1,54# can show a positive Lyapuno
exponent. The Lyapunov localization can be regarded as
of the many-particle effects.

The particle number dependence of the Lyapunov loc
ization width normalized by the particle numberN was in-
vestigated a little in this paper. Figure 3 suggests that
Lyapunov localization width normalized by the particle num
ber decreases as a function of the particle number itself,
we need further calculations to show the existence of a t
modynamical limit (N→1`), as well as its low density
limit ( r→0).

We suggested that the bending of the Lyapunov spectr
the low density cases accompanying the linear depend
@LD# of the localization widths may come from a time-sca
separation in the dynamics. As one of the possible expla
tions of this point we demonstrate a strong asymmetry of
amplitudes of the spatial and momentum parts of
Lyapunov vectors at low density. However this may not g
a sufficient explanation as to where the bending point of
Lyapunov spectra is, and one may also indicate that
Lyapunov spectrum is related to growing~or reducing!
speeds of the amplitudes of the Lyapunov vectors, not
amplitudes of the Lyapunov vectors themselves. This
mains an open question.

In the Introduction we have noted the work on coupl
map lattices Refs.@19–21#, where a connection with the
Kardar-Parisi-Zhang equation is made and then used to
cuss the scaling behavior and finite-size effects. Unfo
nately it is difficult to make any direct numerical comparis
between our results and those on coupled map lattices.
though the thrust of their investigation is very similar, t
models are sufficiently different to preclude this, at least
the results presented here. Their models are purely o
dimensional coupled lattice models of size range 100
8000, while ours are two-dimensional hard-disk systems
at most 100 particles in a restricted geometry that ma
them seem almost one dimensional. The fact that R
@19,20# can make a connection with the Kardar-Parisi-Zha
equation and then discuss the scaling behavior of finite-
effects is very appealing. For our system we are unable
perform simulations that are large enough to consider fin
size effects, but it is something that may be possible in
future.

Results in this paper suggest that the localized behavio
the Lyapunov vectors comes from the short range propert
the particle interactions~Fig. 5!, noting that the hard-core
interaction of the systems used in this paper is the sho
range interactions possible. Therefore it should be interes
to compare our results with the Lyapunov localization
systems with longer range particle interactions. As m
tioned in the Introduction of this paper, a conjecture abou
relation between the Lyapunov localization and the existe
of the thermodynamical limit of the largest Lyapunov exp
nent is suggested, however we have not explored this he
seems plausible that Lyapunov localization may be a su
cient but not necessary condition for the existence of
thermodynamical limit for the largest Lyapunov expone
This conjecture remains to be tested.
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APPENDIX A: INEQUALITY
FOR THE LOCALIZATION WIDTH

In this appendix we derive inequality~10! for the local-
ization width of the Lyapunov vector.

First we note the inequality 0<S(n) which comes from
Eqs.~5! and ~8!. This leads to the inequality 1<W (n).

Second, we note

ln N1(
j 51

N

g j
(n)~ t !ln g j

(n)~ t !

5N21(
j 51

N

@g j
(n)~ t !N# ln@g j

(n)~ t !N#

5N21(
j 51

N

$@g j
(n)~ t !N# ln@g j

(n)~ t !N#2@g j
(n)~ t !N#11%

5N21(
j 51

N

F„g j
(n)~ t !N… , ~A1!

where we used Eq.~4!, and the functionF(x) of x is defined
by

F~x![xln x2x11. ~A2!

It is easy to show that the functionF(x) satisfies the inequal
ity

F~x!>0 in x>0. ~A3!

Equations~8! and ~A1!, and inequality~A3! lead to

ln N2S(n)5N21(
j 51

N

^F„g j
(n)~ t !N…&>0, ~A4!

noting the inequalityg j
(n)(t)N>0. Therefore we obtain the

inequalityW (n)<N using Eq.~9!. From the two inequalities
1<W (n) andW (n)<N we derive the inequality~10! for the
localization width.

We can also show that the functionF(x) defined by Eq.
~A2! satisfiesF(x)50 only whenx51. Using this point and
Eqs. ~9! and ~A4! we get the fact that the equalityW (n)

5N for the localization width is satisfied only when all th
quantities g j

(n)(t), j 51,2, . . .N are equal, namely, when
g j

(1)(t)5g j
(2)(t)5•••5g j

(N)(t)51/N.

APPENDIX B: COMPARISON WITH SQUARE CASES

In this appendix we discuss differences between qu
one-dimensional systems and square systems for
Lyapunov localization and its related phenomena. For
3-17
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quasi-one-dimensional system in this paper we choose
system lengths as

Ly5Ly8[2R~111026!, ~B1!

Lx5Lx8[NLy~11d!

@in the quasi-one-dimensional cases# ~B2!

with a parameterd to change the particle density. For mea
ingful comparisons between the square and quasi-o
dimensional cases we use system lengths for the square
tems so that both cases give the same area, for the s
value of the parameterd, namely,

Ly5Lx5ALx8Ly85AN~11d!@2R~111026!#2

@in the square cases#. ~B3!

Except for these lengthsLx andLy , we use the same param
eter values as given in the text, such asR51, M51, and
E5N. In this appendix we consider systems of 50 partic
(N550). In Appendixes B1, B2, B3, and B4 we consider t
case ofd5105 in which the linear dependence@LD# of lo-
calization widths with respect to Lyapunov index appears
Appendix B 5 we discuss boundary effects in the localizat
width in the case ofd50.5.

1. Lyapunov spectra

The first example is the Lyapunov spectra of the qua
one-dimensional case and the square case. Figure 17 i
positive branch of the normalized Lyapunov spectra as fu
tions of the normalized Lyapunov indexn/(2N) in the quasi-
one-dimensional system and the square system ford5105.
Here the values of the largest Lyapunov exponents are g
by l (1)'0.000 157 in the quasi-one-dimensional system,
l (1)'0.000 552 in the square system. As shown in Fig. 17

FIG. 17. The Lyapunov spectra normalized by the larg
Lyapunov exponentl (1) as functions of the normalized Lyapuno
index n/(2N) in the case ofd5105 in the quasi-one-dimensiona
system~circles! and the square system~triangles!. Inset: Enlarged
graphs of the normalized Lyapunov spectra in a region of sm
positive Lyapunov exponents.
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sharp bending of the Lyapunov spectra occurs in both ca
but it occurs at a slightly smaller Lyapunov index in th
square case than in the quasi-one-dimensional case.
Lyapunov spectrum in the quasi-one-dimensional case is
shown in Fig. 9.

There is a difference between the quasi-one-dimensio
case and the square case in the region of small pos
Lyapunov exponents. In the inset to Fig. 17, we can rec
nize two stepwise structures of the Lyapunov spectrum c
sisting of six Lyapunov exponents in the quasi-on
dimensional system. It should be noted that each of th
steplike structures consists of one four-point step and
two-point step although these two steps are too close to
distinguished in Fig. 17.~This is also evidenced by invest
gating wavelike structures of the Lyapunov vectors, the
called Lyapunov modes@25#.! On the other hand, we canno
recognize any stepwise structure in the square case, bec
50 particles in a square system with densityr
50.000 007 85 . . . is toosmall to show a stepwise structur
of the Lyapunov spectrum.~It is known that rectangular sys
tems including the quasi-one-dimensional systems sho
longer stepwise region of Lyapunov spectra than in
square system with the same area@5#.! In the square system
the gap between the smallest nonzero positive Lyapunov
ponent l2N24 and the zero Lyapunov exponents is larg
than in the quasi-one-dimensional system.

2. Localization widths

Next we consider the localization width in the quasi-on
dimensional case and the square case in Fig. 18 fod
5105. In the region of the Lyapunov index corresponding
the Lyapunov spectra changing smoothly, qualitative beh

t

ll

FIG. 18. Normalized localization widthW (n)/N as a function of
the normalized Lyapunov indexn/(2N) in the case ofd5105 in the
quasi-one-dimensional case~circles! and the square case~triangles!.
The dotted lines are fits by exponential functions~the dependence
@ED#). The dash-dotted line, solid line, and dashed line corresp
to W (n)5Wwav ('0.736N), Wran ('0.651N), and Wmin (52),
respectively.
3-18
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ior of the localization width are rather similar, and consist
the linear dependence@LD# in small Lyapunov indices and
the exponential dependence@ED# in other indices, although
the region of the linear dependence@LD# in the square case
is slightly smaller than in the quasi-one-dimensional case
Fig. 18 we give fits of exponential functionsy5ã

1b̃ exp(g̃x) for the exponential dependence@ED# by dotted
lines. ~The parameter values to fit data are (ã,b̃,g̃)
5(0.560 814,22.733 48,27.505 44) for the quasi-one
dimensional case, and (ã,b̃,g̃)5(0.597 656,23.353 86,
210.9674) for the square case.! The localization widths are
larger than their minimum valueW (n)5Wmin52 and are
smaller than the random component caseW (n)5Wran
'0.651N except in the stepwise region of the Lyapun
spectra, and the smallest localization widthW (1) is close to
Wmin in both the cases.

As in the Lyapunov spectra, the localization width sho
a different behavior with the Lyapunov index correspond
to the stepwise structure of the Lyapunov spectra. As
have already mentioned, in the square case ofN550 there is
no stepwise region of the Lyapunov spectrum, so there is
a corresponding structure in the localization width. We c
see that in the square case the localization widthsW (n) de-
crease as a function of the Lyapunov indexn in the region of
large Lyapunov indices corresponding to small posit
Lyapunov exponents. On the other hand, we can see th
fect of the stepwise structure of the Lyapunov spectrum
the localization width of the quasi-one-dimensional case.
pecially a pair of two dots on the lineW (n)5Wwav corre-
spond to the two-point step of the Lyapunov spectrum sho
in Fig. 17, supporting that in the Lyapunov spectrum of F
17 for the quasi-one-dimensional case the first~second! step
of the Lyapunov spectrum is a four-point step~a two-point
step! looking from the zero-Lyapunov exponents.

3. Angle between the spatial and momentum parts
of the Lyapunov vector

Figure 19 shows the time-averaged angles^u (n)&/p, n
51,2, . . . ,2N between the spatial and momentum parts
the Lyapunov vectors for the quasi-one-dimensional and
square system as functions of the normalized Lyapunov
dexn/(2N) for d5105. In both the cases, the angleu (n) is a
rapidly increasing function of the Lyapunov indexn in the
linear dependence@LD# region of the localization width, and
almostp/2 in the exponential dependence@ED# region.

We can see the stepwise structure in the angleu (n) as a
function of the Lyapunov indexn in the quasi-one-
dimensional case~see the inset to Fig. 19!. This structure
corresponds to the stepwise structure of the Lyapunov s
trum shown in Fig. 17.

4. Amplitudes of the x and y components of the spatial
and momentum parts of the Lyapunov vectors

As the next quantities to investigate the difference
tween the quasi-one-dimensional case and the square
we consider the amplitudes of thex andy components of the
spatial and momentum parts of the Lyapunov vectors. Fig
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20 shows the graphs of the time averages of normalized
plitudes of thex andy components of the spatial part and th
momentum part of the Lyapunov vectors as functions of
normalized Lyapunov indexn/(2N) for the square withd
5105. The corresponding graphs for the quasi-on
dimensional case are shown in Fig. 11~d!. In the square sys-
tem there is no difference between thex andy directions, so
there is no gap between thex andy components in the spatia
part and the momentum part of the Lyapunov vectors~except
for those where the spatial part corresponds to the z
Lyapunov exponents!. Although the momentum part
^hpx

(n)(t)& and ^hpy
(n)(t)& @the spatial partŝ hqx

(n)(t)& and
^hqy

(n)(t)&] are rapidly decreasing~increasing! functions of
the Lyapunov index in the region of the linear dependen
@LD# of the localization widths~see the small figure on th
top right of Fig. 20 for the momentum parts of the Lyapun
vectors. Also note the normalization condition~20! to know
the corresponding spatial parts!, the boundary of the two
dependences@LD# and @ED# is not so clear in this figure.

In Fig. 20 we cannot recognize a stepwise structure of
quantities^hqx

(n)(t)&, ^hqy
(n)(t)&, ^hpx

(n)(t)&, and^hpy
(n)(t)&, be-

cause there is no stepwise structure of the Lyapunov s
trum in this system. It may be noted that the normalizedx
component ^hpx

(n)(t)& and the normalizedy component
^hpy

(n)(t)& of the momentum part of the Lyapunov vecto
corresponding to the zero Lyapunov exponentsl (2N22),
l (2N21), and l (2N) are almost zero, as in the quasi-on
dimensional case.

FIG. 19. The normalized time-average^u (n)&/p of the angles
between the spatial and momentum parts of the Lyapunov vecto
the quasi-one-dimensional case~circles! and the square case~tri-
angles! as functions of the normalized Lyapunov indexn/(2N) for
d5105. The solid line corresponds to the valueu (n)5p/2 of the
angle. Inset: Enlarged graphs of normalized angles^u (n)&/p in the
region of Lyapunov index in which the exponential dependen
@ED# of the localization widths~and the stepwise structure of th
Lyapunov spectrum! appears.
3-19
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5. Boundary effects in the localization widths

As the last example in this appendix we check bound
effects in Lyapunov localizations. In this section we calcul
the localization widths for square systems and quasi-o
dimensional systems with purely hard-wall boundary con
tions or purely periodic boundary conditions. To give reas
able comparisons between the hard-wall boundary cases
the periodic boundary cases we choose the system lengthLx
andLy so that the effective region for a particle to move
the same in both cases. This means that if we choose
system size asLx5L̃x andLy5L̃y for the periodic boundary
case, then they must beLx5L̃x12R and Ly5L̃y12R for
the corresponding hard-wall boundary case. Except for
point, we choose the same value of the other parameter
these two boundary cases. In this section we use the v
d50.5. Note that in this case the linear dependence@LD# of
the localization widths does not appear.

Figure 21 is a comparison of the normalized localizat
widths W (n)/N, n51,2, . . . ,2N for the square system with
periodic boundary conditions, and hard-wall boundary c

FIG. 20. Time average of the normalized amplitudes of thx
component of the spatial part@^hqx

(n)(t)&, circles#, they component
of the spatial part@^hqy

(n)(t)&, triangles#, the x component of the
momentum part@^hpx

(n)(t)&, pluses#, and they component of the
momentum part@^hpy

(n)(t)&, crosses# of the Lyapunov vectors as
functions of the normalized Lyapunov indexn/(2N) for a square
system with d5105. The corresponding quasi-one-dimension
case is given in Fig. 11~d!. The values of̂hqx

(n)(t)& and^hqy
(n)(t)& are

almost indistinguishable~except at the points corresponding to t
zero Lyapunov exponents!. Similarly, the values of̂ hpx

(n)(t)& and
^hpy

(n)(t)& are indistinguishable. The small panels at the top rig
hand side shows the graphs of^hpx

(n)(t)& and^hpy
(n)(t)& on a smaller

scale showing again that these two properties are indistinguish
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ditions, and the quasi-one-dimensional system with perio
boundary conditions, and hard-wall boundary conditio
Figure 21 shows that the localization widths for hard-w
boundary conditions are smaller than for periodic bound
conditions in both square and quasi-one-dimensional s
tems. However it should be noted that differences in
values of the localization widths are rather small in the
gion of small Lyapunov indicesn in which the Lyapunov
vectors are strongly localized. This is a natural result beca
the Lyapunov localization is a local behavior so that it sho
not depend strongly on global conditions such as bound
conditions. We note that in very narrow systems, such as
quasi-one-dimensional system, a strong boundary effect
pears because particles can collide with walls much m
often than in square cases, and this could be the reaso
the differences in the values of the localization widths for t
different boundary conditions are larger in the quasi-o
dimensional system than in the square system. A part of
localization widths as a function of the Lyapunov index a

nicely fitted by the exponential functiony5ã1b̃ exp(g̃x)
for the exponential dependence@ED# with fitting parameters

ã, b̃ and g̃, shown as the dotted lines in Fig. 21. Here, t

values of fitting parameters are chosen as (ã,b̃,g̃)
5(0.653 629,20.377 495,210.9742 for the square case wit

the periodic boundary conditions, (ã,b̃,g̃)5(0.638 696,
20.422 529,210.3554) for the square case with th

l

-

le.

FIG. 21. Normalized localization widthsW (n)/N as functions of
the normalized Lyapunov indexn/(2N) for d50.5 in a square sys-
tem with periodic boundary conditions~circles!, in a square system
with hard-wall boundary conditions~triangles!, in a quasi-one-
dimensional system with periodic boundary conditions~pluses!, in a
quasi-one-dimensional system with hard-wall boundary conditi
~crosses!. The dotted lines are fits of the numerical data by exp
nential functions. The dash-dotted line, solid line, and dashed
correspond toW (n)5Wwav ('0.736N), Wran ('0.651N), and
Wmin (52), respectively.
3-20
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hard-wall boundary conditions, (ã,b̃,g̃)5(0.578 304,
20.464 099,28.414 39) for the quasi-one-dimensional pe

odic boundary case, and (ã,b̃,g̃)5(0.534 472,20.449 403,
26.762 48) for the quasi-one-dimensional hard-wall bou
ary case. It may also be noted that the part of the localiza
widths corresponding to the Lyapunov spectrum chang
smoothly seems to be slightly larger than the valueWran for
the localization width for random components in the squ
system with periodic boundary conditions andd50.5 in
Fig. 21.
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In the quasi-one-dimensional periodic boundary case
Fig. 21 we can recognize two pairs of localization widths
the lineW (n)5Wwav corresponding to the two-point steps
the Lyapunov spectra, but there is not a localization width
this value in the hard-wall boundary case. This comes fr
the fact that in the periodic boundary case the system s
fies total momentum conservation leading to the two-po
steps of the Lyapunov spectrum whereas the system
hard-wall boundary conditions does not satisfy such a c
servation in any direction~details of this point were dis-
cussed in Ref.@25#!.
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